Skip to main content

Fuzzy Control

  • Chapter
  • First Online:
Intelligent Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 517))

Abstract

PD-like and PI-like fuzzy logic controllers (FLC) have the same characteristics as the traditional PD and PI-type controllers. That is, PD-like FLC exhibits smaller overshoot, fast rise time and small settling time but shows significant steady state error. Whereas PI-like FLC improves the steady state error but exhibits penalised rise time, large overshoot and excessive oscillation. This chapter investigates different types of fuzzy PD and PI controllers and proposes a switching PD-PI-like FLC that shows improved performance and demonstrates advantages over the PD, PI and PID like FLCs. Firstly, it improves the steady state error and reduces the rise time and settling time. Secondly, it reduces rule-base from n3 to only n2 . This chapter also investigates the integral windup action, which is an important issue in designing FLC with integral element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Siddique NH, Tokhi O (2012) Evolutionary tuning of modular fuzzy controller for two-wheeled wheelchair. Int J Comput Intell Appl 11(2):1–23

    Article  Google Scholar 

  • Bennet S (1994) Real time computer control: an introduction, 2nd edn. Prentice Hall, New York, London

    Google Scholar 

  • Braae M, Rutherford DA (1978) Fuzzy relations in a control setting. Kybernetes 7:185–188

    Article  MATH  Google Scholar 

  • Braae M, Rutherford DA (1979) Theoretical and linguistic aspects of the fuzzy controller. Automatica 15:553–577

    Article  MATH  Google Scholar 

  • Brehm T (1994) Hybrid fuzzy logic PID controller. In: Proceedings of 3rd IEEE conference on fuzzy systems. 3:1682–1687

    Google Scholar 

  • Cai Z-X (1997) Intelligent control: principles, techniques and applications. World Scientific, Singapore, NJ, London, Hong Kong

    Book  MATH  Google Scholar 

  • Carvajal J, Chen G, Ogmen H (2000) Fuzzy PID controller: design, performance evaluation, and stability analysis. Inf Sci 123:249–270

    Article  MathSciNet  MATH  Google Scholar 

  • Chao C-T, Teng C-C (1997) A PD-like self-tuning fuzzy controller without steady-state error. Fuzzy Sets Syst 87:141–154

    Article  Google Scholar 

  • Chen G (1996) Conventional and fuzzy PID controllers: an overview. Int J Intell Control Syst 1:235–246

    Article  MathSciNet  Google Scholar 

  • Chen M, Linkens DA (1998) A hybrid neuro-fuzzy PID controller. Fuzzy Sets Syst 99:27–36

    Article  Google Scholar 

  • Choi B-J, Kwak S-W, Kim BK (1999) Design of a single-input fuzzy logic controller and its properties. Fuzzy Sets Syst 106(8):299–308

    Article  MathSciNet  MATH  Google Scholar 

  • Choi B-J, Kwak S-W, Kim BK (2000) Design and stability analysis of single-input fuzzy logic controller. IEEE Trans Syst Man Cybern B Cybern 30(2):303–309

    Article  Google Scholar 

  • Chou CH, Lu HC (1993) Real-time fuzzy controller design for hydraulic servo system. Int J Comput Ind 22:129–142

    Article  Google Scholar 

  • Chung H-Y, Chen B-C, Lin J-J (1998) A PI-type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst 93:23–28

    Article  Google Scholar 

  • Driankov D, Hellendorn H, Reinfrank M (1993) An Introduction to Fuzzy Control. Springer-Verlag, New York

    Google Scholar 

  • Farinwata SS, Filev D, Langari R (2000) Fuzzy control synthesis and analysis. Wiley, Chichester

    MATH  Google Scholar 

  • Garcia-Benetiz E, Yurkovich S, Passino KM (1993) Rule-based supervisory control of a two-link flexible manipulator. J Intell Rob Syst 7:195–213

    Article  Google Scholar 

  • Guerocak HB, de Lazaro AS (1994) A fine tuning method for fuzzy logic rule bases. Fuzzy Sets Syst 67:147–161

    Article  Google Scholar 

  • Harris CJ, Moore CG, Brown M (1993) Intelligent control: aspects of fuzzy logic and neural nets, (World scientific series vol. 6). World Scientific, Singapore, NJ, London, Hong Kong

    Google Scholar 

  • Hu BG, Mann GKI, Gosine RG (1999) New methodology for analytical and optimal design of fuzzy PID controllers. IEEE Trans Fuzzy Syst 7(5):521–539

    Article  Google Scholar 

  • Hu B-G, Mann GKI, Gosine RG (2001) A systematic study of fuzzy PID controllers—function-based evaluation approach. IEEE Trans Fuzzy Syst 9(5):699–712

    Article  Google Scholar 

  • Kovacic Z, Bogdan S (2006) Fuzzy controller design: theory and application. CRC Press, Taylor and Francis Group

    Google Scholar 

  • Kubica K, Wang D (1993) A fuzzy control strategy for a flexible-link robot, IEEE International Conference on Robotics and Automation, vol 2. Atlanta, pp 236–241, 2–6 May

    Google Scholar 

  • Kwok DP, Tam D, Li CK, Wang P (1990) Linguistic PID controllers. In: Proceedings of 11th IFAC world congress, Tallinn, USSR, pp 192–197

    Google Scholar 

  • Kwok DP, Tam D, Li CK, Wang P (1991) Analysis and design of fuzzy PID control systems. In: Proceedings of IEE control’91 conference, vol 2. Heriot Watt University, Edinburg, pp 955–960

    Google Scholar 

  • Lee J (1993) On methods for improving performance of PI-type fuzzy logic controllers. IEEE Trans Fuzzy Syst 1(1):298–301

    Google Scholar 

  • Lee JX, Vukovich G, Sasaidek JZ (1994) Fuzzy control of a flexible link manipulator. In: Proceeding of American control conference; Baltimore, Maryland, USA, pp 568–574

    Google Scholar 

  • Lewis HW (1997) The foundation of fuzzy control. Plenum Press, New York, London

    Google Scholar 

  • Li H-X (1997) A comparative design and tuning for conventional fuzzy control. IEEE Trans Syst Man Cybern B Cybern 27(5):884–889

    Article  Google Scholar 

  • Li H-X, Gatland HB (1995) A new methodology for designing a fuzzy logic controller. IEEE Trans Syst Man Cybern 25:505–512

    Article  Google Scholar 

  • Li H-X, Gatland HB (1996) Conventional fuzzy control and its enhancement. IEEE Trans Syst Man Cybern B Cybern 26:791–797

    Article  Google Scholar 

  • Li H-X, Zhang L, Cai K-Y, Chen G (2005) An improved robust fuzzy-PID controller with optimal fuzzy reasoning. IEEE Trans Syst Man Cybern B Cybern 35(6):1283–1294

    Article  Google Scholar 

  • Liu K, Lewis FL (1994) Hybrid feedback linearization/fuzzy logic control of a flexible-link manipulator. J Intell Fuzzy Syst 2:325–336

    Google Scholar 

  • MacVicar-Whelan PJ (1976) Fuzzy sets for man-machine interaction. Int J Man Mach Stud 8:687–697

    Article  MATH  Google Scholar 

  • Mamdani EH, Assilian S (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc IEEE 121:1585–1588

    Google Scholar 

  • Maeda M, Murakami S (1992) A self-tuning fuzzy controller. Fuzzy Sets Syst 51:29–40

    Article  Google Scholar 

  • Meressi T (1995) Non-linear and fuzzy logic vibration control of flexible manipulators. In: Proceedings of the American control conference, Seattle, Washington, USA, pp 4238–4242

    Google Scholar 

  • Mohan BM, Patel AV (2002) Analytical structures and analysis of the simplest fuzzy PD controllers. IEEE Trans Syst Man Cybern B 32(2):239–248

    Article  Google Scholar 

  • Moudgal VG, Kwong WA, Passino KM, Yurkovich S (1994a) Fuzzy learning control for a flexible-link robot. In: Proceedings of American control conference, Maryland, pp 563–567

    Google Scholar 

  • Moudgal VG, Yurkovich S, Passino KM (1994b) Expert supervisory control for a two-link flexible robot. In: Proceedings of IEEE international conference on robotics and automation, San Diego, 8–13 May, pp 3296–3301

    Google Scholar 

  • Moudgal VG, Kwong WA, Passino KM, Yurkovich S (1995) Fuzzy learning control of a flexible-link robot. IEEE Trans Fuzzy Syst 3(2):199–210

    Article  Google Scholar 

  • Mudi RK, Pal NR (1999) A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Trans Fuzzy Syst 7(1):2–16

    Article  Google Scholar 

  • Palm R (1992) Sliding mode fuzzy control. Int Control Fuzzy Syst 1992:519–526

    Google Scholar 

  • Palm R (1994) Robust control by fuzzy sliding mode. Automatica 30(9):1429–1437

    Article  MathSciNet  MATH  Google Scholar 

  • Palm R (1995) Scaling of fuzzy controllers using cross-correlation. IEEE Trans Fuzzy Syst 3(1):116–123

    Article  MathSciNet  Google Scholar 

  • Pedrycz W, Gudwin R, Gomide F (1997) Nonlinear context adaptation in the calibration of fuzzy sets. Fuzzy Sets Syst 88(1):91–97

    Article  Google Scholar 

  • Rattan KS, Chiu B, Feliu V, Brown HB Jr (1994) Rule-based fuzzy control of a single-link flexible manipulator in the presence of joint friction and load changes. In: Proceedings of the American control conference, Seattle, Washington, pp 2749–2750

    Google Scholar 

  • Shin YC, Xu C (2009) Intelligent systems: modelling, optimistion and control. CRC Press, Taylor and Francis Group

    Google Scholar 

  • Sooraksa P, Pattaradej T, Chen G (2002) Design and implementation of fuzzy PID controller for handlebar of a bicycle robot. Integr Comput Aided Eng 9(4):319–331

    Google Scholar 

  • Sugeno M (1985) An Introductory Survey of Fuzzy Control. Inf Sci 36:59–83

    Google Scholar 

  • Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modelling. IEEE Trans Fuzzy Syst 1(1):7–31

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    Article  MATH  Google Scholar 

  • Tang KL, Mulholland RJ (1987) Comparing fuzzy logic with classical controller designs. IEEE Trans Syst Man Cybern 17:1085–1087

    Article  Google Scholar 

  • Tang KS, Man KF, Chen G, Kwong S (2001a) An optimal fuzzy PID controller. IEEE Trans Ind Electron 48(4):757–765

    Article  Google Scholar 

  • Tang WM, Chen G, Lu RD (2001b) A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Int J Fuzzy Sets Syst 118:109–119

    Article  MathSciNet  Google Scholar 

  • Tsukamoto Y (1979) An approach to fuzzy reasoning model. Adv Fuzzy Set Theory Appl 137:149 (Amsterdam, North-Holland)

    Google Scholar 

  • Tzafestas S, Papanikolopoulos NP (1990) Incremental fuzzy expert PID control. IEEE Trans Ind Electron 37:365–371

    Article  Google Scholar 

  • Vukovich G, Lee JX (1999) Experiments of fuzzy versus PD controls of flexible link manipulator. In: Proceeding of 14th world congress of IFAC, Beijing, China, pp 397–402

    Google Scholar 

  • Yager RR, Filev D (1994) Essentials of fuzzy modelling and control. Wiley, NY, Chichester

    Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1968) Fuzzy algorithms. Inf Control 12:94–102

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision process. IEEE Trans Syst Man Cybern 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1975a) Fuzzy logic and approximate reasoning. Syntheses 30:407–428

    Article  MATH  Google Scholar 

  • Zadeh LA (1975b) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1994) The role of fuzzy logic in modelling. Ident Control Model Ident Control 15(3):191–203

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178(13):2751–2779

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Mizumoto M (1994) On rule self-generating for fuzzy control, International Journal of Intelligent Systems. 9(12):1047–1057

    Google Scholar 

  • Zheng L (1992) A practical guide to tune of proportional and integral (PI) like fuzzy controller. In: Proceedings of 1st IEEE international conference on fuzzy systems, San Diego, CA, pp 633–641

    Google Scholar 

  • Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64(1942):759–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Siddique .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siddique, N. (2014). Fuzzy Control. In: Intelligent Control. Studies in Computational Intelligence, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-02135-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02135-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02134-8

  • Online ISBN: 978-3-319-02135-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics