Skip to main content

Control Systems

  • Chapter
  • First Online:
Intelligent Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 517))

Abstract

The basic principle of control is very simple; move the system such that it minimises some error function. A brief theoretical introduction to control system is presented for understanding the controller design in this chapter. Different control schemes such as open-loop and closed-loop control strategies are discussed. Application of open-loop control strategy is limited. The problems of closed-loop control strategies are associated with measurement of the control variables and based on the measurement using suitable sensor mechanism, collocated an non-collocated control approaches have been suggested depending on the accuracy of the available models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athans M, Elab PL (1966) Optimal control: a introduction to the theory and its applications. McGraw-Hill, New York, pp 504–561

    Google Scholar 

  • Azad AKM (1994) Analysis and design of control mechanisms for flexible manipulator systems. Ph.D. thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK

    Google Scholar 

  • Azad AKM, Shaheed MH, Mohammed Z, Tokhi MO, Poerwanto H (2008) Open-loop Control of Flexible Manipulators using Command-generation techniques, Book Chapter 8: Flexible Robot Manipulators - Modelling, Simulation and Control, Edt. MO Tokhi and AKM Azad, IET, London, UK

    Google Scholar 

  • Bayo E (1988) Computed torque for the position control of open-loop flexible robots. In: Proceeding of IEEE international conference on robotics and automation, Philadelphia, 25–29 April, pp 316–321

    Google Scholar 

  • Book WJ (1984) Recursive lagrangian dynamics of flexible manipulator arms. Int J Robot Res 3(3):87–101

    Article  Google Scholar 

  • Book WJ, Alberts TE, Hastings GG (1986) Design strategies for high-speed lightweight robots. Computers in mechanical engineering, 5(2):26–33

    Google Scholar 

  • Cannon RH, Schmitz E (1984) Initial experiments on the control of a flexible one-link robot. Int J Robot Res 3(3):62–75

    Article  Google Scholar 

  • Cesari L (1983) Optimisation theory and applications: problems with ordinary differential equations. Springer, New York

    Book  Google Scholar 

  • Citron SJ (1969) Elements of optimal control. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  • Dellman R, Glicksber I, Gross O (1956) On the bang–bang control problem. Q Appl Mech 14(1):11–18

    Google Scholar 

  • Fu KS, Gonzalez RC, Lee CSG (1987) Robotics: control, sensing, vision, and intelligence. McGraw-Hill, Singapore

    Google Scholar 

  • Hastings GG, Book WJ (1985) Experiments in optimal control of a flexible arm. In: Proceedings of American control conference, vol 2, pp 728–729

    Google Scholar 

  • Hastings GG, Ravisanker BN (1988) An experimental system for investigation of flexible link experiencing general motion. In: Proceedings of the conference on decision and control, pp 1003–1008

    Google Scholar 

  • Hollerbach JM (1980) A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybern 10(11):730–736

    Article  MathSciNet  Google Scholar 

  • Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Book  MATH  Google Scholar 

  • Jain S, Khorrami F (1998) Robust adaptive control of flexible joint manipulators. Automatica 34(5):609–615

    Article  MathSciNet  MATH  Google Scholar 

  • Judd RP, Falkenburg DR (1985) Dynamics of nonrigid robot linkages. IEEE Trans Automatic Control 30(5):499–502

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • King JO, Gourishankar VG, Rink RE (1987) Lagrangian dynamics of flexible manipulators using angular velocities instead of transformation matrices. IEEE Trans Syst Man Cybern 11:1059–1068

    Article  Google Scholar 

  • Kotnok PT, Yorkovich S, Ozguner U (1988) Acceleration feedback for control of a flexible manipulator arm. J Robot Syst 5(3):181–196

    Article  Google Scholar 

  • Lee EB (1960) Mathematical aspects of the synthesis of linear minimum response-time controller, IRE Trans Autom Control AC-5(4):283–290

    Google Scholar 

  • Lee JW, Huggins JD, Book WJ (1988) Experimental verification of a large flexible manipulator. In: Proceedings of American control conference, vol 2, Atlanta, GA, pp 1021–1028

    Google Scholar 

  • Levine WS (1996) The control handbook. CRC Press, Florida

    MATH  Google Scholar 

  • Li C-Jin, Sankar TS (1993) Systematic methods for efficient modeling and dynamics computation of flexible robot manipulators. IEEE Trans Syst Man Cybern 23(1):77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Meirovitch L (1967) Analytical methods in vibrations. The Macmillian Company, New York

    MATH  Google Scholar 

  • Meckl PH, Seering WP (1985) Active damping in a three-axis robotic manipulator. J Vibr Acoust Stress Reliab Des 107(1):38–46

    Article  Google Scholar 

  • Morris AS, Madani A (1995) Inclusion of shear deformation term to improve accuracy in flexible-link robot modeling. Department of Automatic Control and Systems Engineer, University of Sheffield, Research Report 583

    Google Scholar 

  • Moudgal VG, Kwong WA, Passino KM, Yurkovich S (1995) Fuzzy learning control of a flexible-link robot. IEEE Trans Fuzzy Syst 3(2):199–210

    Article  Google Scholar 

  • Najmeijer H, van der Schaft AJ (2006) Nonlinear dynamical control systems, 3rd edn. Springer, New York

    Google Scholar 

  • Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Networks 1(1):4–27

    Article  Google Scholar 

  • Poerwanto H (1998) Dynamic simulation and control of flexible manipulator systems. Ph. D Thesis, Department of Automatic Control and Systems Engineering, Sheffield University, England

    Google Scholar 

  • Rattan KS, Feliu V, Brown HB (1990) Tip position control of flexible arms. In: IEEE International conference on robotics and automation, vol 3, pp 1803–1808

    Google Scholar 

  • Saga AZ, White CC (1977) Optimum systems control. Prentice-Hall, Englewood Cliffs, pp 103–107

    Google Scholar 

  • Sarangapani J (2006) Neural network control of nonlinear discrete-time systems. CRS Press, Taylor & Francis, Boca Ratan, London

    Book  Google Scholar 

  • Sastry S (2004) Nonlinear systems: analysis, stability and control. Springer, New York

    Google Scholar 

  • Schmitz E (1985) Experiments on the end-point position control of a very flexible one-link manipulator. Ph.D. Thesis, Stanford University, USA

    Google Scholar 

  • Shimkin N (2009) Nonlinear control systems. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer-Verlag GmbH Berlin, Heidelberg

    Google Scholar 

  • Siddique, NH (2002) Intelligent Control of Flexible-link Manipulator Systems, PhD Thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield. England, UK

    Google Scholar 

  • Singh G, Kabamba PT, McClamroch NH (1989) Planner time-optimal rest-to-rest slewing manoeuvre of flexible spacecraft. J Guidance Control Dyn 12(1):71–81

    Article  MathSciNet  Google Scholar 

  • Singhose, WE, Seering WP (2008) Control of Flexible Manipulators with Input Shaping Techniques, Book Chapter 9: Flexible Robot Manipulators - Modelling, Simulation and Control, Edt. MO Tokhi and AKM Azad, IET. London, UK

    Google Scholar 

  • Slotine J–J, Li W (1991) Applied nonlinear control. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  • Stadenny J, Belanger P (1986) Robot manipulator control by acceleration feedback: stability, design and performance issues. In: Proceedings of the IEEE conference on decision and control, Athens, Greece, pp 80–85

    Google Scholar 

  • Theodore RJ, Ghosal A (1997) Modeling of flexible-link manipulators with prismatic joints. IEEE Trans Syst Man Cybern Part B 27(2):296–305

    Article  Google Scholar 

  • Tokhi MO, Azad AKM (1995) Real-time finite difference simulation of a single-link flexible manipulator system incorporating hub inertia and payload. Proc IMechE-I: J Syst Control Eng 209(2):21–33

    Google Scholar 

  • Tokhi MO, Azad AKM (1996a) Modeling of a single-link flexible manipulator system: theoretical and practical investigations. Robotica 14:91–102

    Article  Google Scholar 

  • Tokhi MO, Azad AKM (1996b) Control of flexible manipulator systems. Proc Inst Mech Eng 210:113–130

    Article  Google Scholar 

  • Tokhi MO, Azad AKM, Shaheed MH, Poerwanto H (2008) Collocated and Non-collocated Control of Flexible Manipulators, Book Chapter 12: Flexible Robot Manipulators - Modelling, Simulation and Control, Edt. MO Tokhi and AKM Azad, IET. London, UK

    Google Scholar 

  • Vidyasagar M (2002) Nonlinear systems analysis, 2nd edn. SIAM Classics in Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Warwick K (1989) Control systems: an introduction. Prentice-Hall, UK

    Google Scholar 

  • Wells RL, Schueller JK (1990) Feedforward and feedback control of a flexible robotic arm. IEEE Control Syst Maga 10(1):9–15

    Article  Google Scholar 

  • Yang JH, Lian FL, Fu LC (1997) Non-linear adaptive control for flexible-link manipulators. Trans Robot Autom 13(1):140–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Siddique .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siddique, N. (2014). Control Systems. In: Intelligent Control. Studies in Computational Intelligence, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-02135-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02135-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02134-8

  • Online ISBN: 978-3-319-02135-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics