Skip to main content

Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds

  • Chapter
Geometric Control Theory and Sub-Riemannian Geometry

Part of the book series: Springer INdAM Series ((SINDAMS,volume 5))

Abstract

This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly equiregular submanifold, i. e., a smooth submanifold N for which the growth vector of the distribution D and the growth vector of the intersection of D with TN are constant on N. In this case, we generalize the result in [12], which relates the Hausdorff dimension to the growth vector of the distribution. We then consider analytic sub-Riemannian manifolds and, under the assumption that the singular point p is typical, we state a theorem which characterizes the Hausdorff dimension of the manifold and the finiteness of the Hausdorff volume of small balls B(p, ρ) in terms of the growth vector of both the distribution and the intersection of the distribution with the singular locus, and of the nonholonomic order at p of the volume form on M evaluated along some families of vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 in Gromov’s sense, see [7]

References

  1. Agrachev, A., Barilari, D., Boscain, U.: On the Hausdorff volume in sub-Riemannian geometry. Calc. Var. Partial Differential Equations, 43, 355–388 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Anal. 10(2-3), 111–128 (2002) Calculus of variations, nonsmooth analysis andrelated topics.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellaïche, A.: The tangent space in sub-Riemanniangeometry. In Sub-Riemanniangeometry. Progr. Math. 144, 1–78. Birkhäuser, Basel (1996)

    Google Scholar 

  4. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ghezzi, R., Jean, F.: A new class of.(Hk, 1)-rectifiable subsets of metric spaces. Communications on Pure and Applied Analysis 12(2) 881–898 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goresky, M., MacPherson, R.: Stratified Morse theory, Vol. 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin Heidelberg New York (1988)

    Google Scholar 

  7. Gromov, M.: Structures métriques pour les variétés riemanniennes, Vol. 1 of Textes Mathé- matiques [Mathematical Texts]. CEDIC, Paris (1981) Edited by J. Lafontaine and P. Pansu.

    Google Scholar 

  8. Gromov, M.: Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry. Progr. Math. 144, 79–323. Birkhäuser, Basel (1996)

    Chapter  Google Scholar 

  9. Hermes, H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33(2), 238–264 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jean, F.: Uniform estimation of sub-Riemannian balls. J. Dynam. Control Systems 7(4), 473–500 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jean, F.: Control of Nonholonomic Systems and Sub-Riemannian Geometry. ArXiv e-prints, 1209.4387,Sept. 2012. Lecturesgiven at the CIMPA School "Géométrie sous-riemannienne", Beirut, Lebanon.

    Google Scholar 

  12. Mitchell, J.: On Carnot-Carathéodory metrics. J. Differential Geom. 21(1), 35–45 (1985)

    MATH  MathSciNet  Google Scholar 

  13. Montgomery, R.: A tour of subriemanniangeometries, their geodesics and applications. Mathematical Surveysand Monographs 91, American Mathematical Society, Providence, RI (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Jean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghezzi, R., Jean, F. (2014). Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds. In: Stefani, G., Boscain, U., Gauthier, JP., Sarychev, A., Sigalotti, M. (eds) Geometric Control Theory and Sub-Riemannian Geometry. Springer INdAM Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-02132-4_13

Download citation

Publish with us

Policies and ethics