• Wen-Te LiaoEmail author
Part of the Springer Theses book series (Springer Theses)


“Let there be light” [1] and there was the vivid world.


Electromagnetically Induce Transparency Nuclear Transition Coherent Control Nuclear Forward Scattering Linac Coherent Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bible Genesis 1:3Google Scholar
  2. 2.
    A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 mc/s. Astrophys. J. 142, 419 (1965)Google Scholar
  3. 3.
    C. Kittel, P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996)Google Scholar
  4. 4.
    D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    R. Brown, R.Q. Twiss, A test of a new type of stellar interferometer on sirius. Nature 178, 19 (1956)Google Scholar
  6. 6.
    O. Shimomura, F. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J. cell. comp. physiol. 59, 223 (1962)CrossRefGoogle Scholar
  7. 7.
    J. Livet, T. Weissman, H. Kang, J. Lu, R. Bennis, J. Sanes, J. Lichtman, Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    R.L. Mössbauer, Kernresonanzfluoreszenz von gammastrahlung in \({{\rm Ir}}^{191}\). Zeitschrift für Physik A 151, 124 (1958)Google Scholar
  9. 9.
    P.P. Craig, J.G. Dash, A.D. McGuire, D. Nagle, R.R. Reiswig, Nuclear resonance absorption of gamma rays in \({{\rm Ir}}^{191}\). Phys. Rev. Lett. 3, 221 (1959)Google Scholar
  10. 10.
    S.L. Ruby, Mössbauer experiments without conventional sources. J. Phys. Colloques 35, C6–209 (1974)CrossRefGoogle Scholar
  11. 11.
    R.L. Cohen, G.L. Miller, K.W. West, Nuclear resonance excitation by synchrotron radiation. Phys. Rev. Lett. 41, 381 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    G.K. Shenoy, Scientific legacy of Stanley Ruby, in NASSAU 2006, (Springer, Berlin Heidelberg, 2007), p. 5Google Scholar
  13. 13.
    R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer-Verlag, Berlin, 2004)Google Scholar
  14. 14.
    A. Aprahamian, Y. Sun, Nuclear physics: long live isomer research. Nat. Phys. 1, 81 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Carroll, An experimental perspective on triggered gamma emission from nuclear isomers. Laser Phys. Lett. 1, 275 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    D. Belic, C. Arlandini, J. Besserer, J. de Boer, J.J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl, M. Loewe, H.J. Maier, H. Maser, P. Mohr, P. von Neumann-Cosel, A. Nord, H.H. Pitz, A. Richter, M. Schumann, S. Volz, A. Zilges, Photoactivation of \({}^{180}{{\rm Ta}}^{{m}}\) and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope. Phys. Rev. Lett. 83, 5242 (1999)Google Scholar
  17. 17.
    G.C. Baldwin, J.C. Solem, Recoilless gamma-ray lasers. Rev. Mod. Phys. 69, 1085 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Courier Dover Publications, New York, 1991)Google Scholar
  19. 19.
    E. Hand, X-ray free-electron lasers fire up. Nature 461, 708 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Amann, W. Berg, V. Blank, F. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings et al., Demonstration of self-seeding in a hard-x-ray free-electron laser. Nat. Photonics 6, 693 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J. Feldhaus, E. Saldin, J. Schneider, E. Schneidmiller, M. Yurkov, Possible application of x-ray optical elements for reducing the spectral bandwidth of an x-ray sase fel. Opt. Commun. 140, 341 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    E. Saldin, E. Schneidmiller, Y. Shvyd’ko, M. Yurkov, X-ray fel with a mev bandwidth. Nucl. Instrum. Methods Phys. Res. Sect. A 475, 357 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    J. Arthur et al., Linac Coherent Light Source (LCLS), Conceptual Design Report (SLAC, Stanford, CA, 2002)Google Scholar
  24. 24.
    M. Altarelli et al., XFEL: The European X-Ray Free-Electron Laser, Technical Design Report (DESY, Hamburg, 2009)Google Scholar
  25. 25.
    M. Yabashi and T. Ishikawa, XFEL/SPring-8 Beamline Technical Design Report Version 2.0 (RIKEN-JASRI XFEL Project Head Office, 2010)Google Scholar
  26. 26.
    Linac coherent light source lcls-ii, SLAC, Stanford,
  27. 27.
    B.R. Beck, J.A. Becker, P. Beiersdorfer, G.V. Brown, K.J. Moody, J.B. Wilhelmy, F.S. Porter, C.A. Kilbourne, R.L. Kelley, Energy splitting of the ground-state doublet in the nucleus \(^{229}{\rm Th}\). Phys. Rev. Lett. 98, 142501 (2007)Google Scholar
  28. 28.
    Y. Shvyd’Ko, S. Stoupin, V. Blank, S. Terentyev, Near-100% bragg reflectivity of x-rays. Nat. Photonics 5, 539 (2011)Google Scholar
  29. 29.
    F. Pfeiffer, C. David, M. Burghammer, C. Riekel, T. Salditt, Two-dimensional x-ray waveguides and point sources. Science 297, 230 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, T. Salditt, Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics. Phys. Rev. Lett. 94, 074801 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S.-L. Chang, Y.P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, X-ray resonance in crystal cavities: realization of fabry-perot resonator for hard x rays. Phys. Rev. Lett. 94, 174801 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    T.J. Bürvenich, J. Evers, C.H. Keitel, Nuclear quantum optics with x-ray laser pulses. Phys. Rev. Lett. 96, 142501 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    I. Wong, A. Grigoriu, J. Roslund, T.-S. Ho, H. Rabitz, Laser-driven direct quantum control of nuclear excitations. Phys. Rev. A 84, 053429 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    W.-T. Liao, A. Pálffy, C.H. Keitel, Nuclear coherent population transfer with x-ray laser pulses. Phys. Lett. B 705, 134 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Shvyd’ko, S. Stoupin, A. Cunsolo, A. Said, X. Huang, High-reflectivity high-resolution x-ray crystal optics with diamonds. Nat. Phys. 6, 196 (2010)CrossRefGoogle Scholar
  36. 36.
    K. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch, R. Tucoulou, Storage of x-ray photons in a crystal resonator. Nature 404, 371 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Y.V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H.D. Rüter, E.E. Alp, R. Khachatryan, X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    T.E. Glover, M.P. Hertlein, S.H. Southworth, T.K. Allison, J. van Tilborg, E.P. Kanter, B. Krässig, H.R. Varma, B. Rude, R. Santra, A. Belkacem, L. Young, Controlling x-rays with light. Nat. Phys. 6, 69 (2010)CrossRefGoogle Scholar
  39. 39.
    N. Rohringer, D. Ryan, R. London, M. Purvis, F. Albert, J. Dunn, J. Bozek, C. Bostedt, A. Graf, R. Hill et al., Atomic inner-shell x-ray laser at 1.46 nanometres pumped by an x-ray free-electron laser. Nature 481, 488 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    P. Beiersdorfer, A.L. Osterheld, J.H. Scofield, J.R. Crespo López-Urrutia, K. Widmann, Measurement of QED and hyperfine splitting in the \(2{{s}}_{1/2}\)- \(2{{p}}_{3/2}\) x-ray transition in Li-like \(^{209}{\rm Bi}^{80+}\). Phys. Rev. Lett. 80, 3022 (1998)Google Scholar
  41. 41.
    S. Bernitt, G. Brown, J. Rudolph, R. Steinbrügge, A. Graf, M. Leutenegger, S. Epp, S. Eberle, K. Kubiček, V. Mäckel et al., An unexpectedly low oscillator strength as the origin of the fexvii emission problem. Nature 492, 225–228 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Y.V. Shvyd’ko, T. Hertrich, U. van Bürck, E. Gerdau, O. Leupold, J. Metge, H.D. Rüter, S. Schwendy, G.V. Smirnov, W. Potzel, P. Schindelmann, Storage of nuclear excitation energy through magnetic switching. Phys. Rev. Lett. 77, 3232 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    G.V. Smirnov, U. van Bürck, J. Arthur, S.L. Popov, A.Q.R. Baron, A.I. Chumakov, S.L. Ruby, W. Potzel, G.S. Brown, Nuclear exciton echo produced by ultrasound in forward scattering of synchrotron radiation. Phys. Rev. Lett. 77, 183 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    W.G. Rellergert, D. DeMille, R.R. Greco, M.P. Hehlen, J.R. Torgerson, E.R. Hudson, Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the \(^{229}{\rm Th}\) nucleus. Phys. Rev. Lett. 104, 200802 (2010)Google Scholar
  45. 45.
    G.A. Kazakov, A.N. Litvinov, V.I. Romanenko, L.P. Yatsenko, A.V. Romanenko, M. Schreitl, G. Winkler, T. Schumm, Performance of a 229thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    S. Matinyan, Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    A. Pálffy, C.H. Keitel, J. Evers, Single-photon entanglement in the kev regime via coherent control of nuclear forward scattering. Phys. Rev. Lett. 103, 017401 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    R. Coussement, Y. Rostovtsev, J. Odeurs, G. Neyens, H. Muramatsu, S. Gheysen, R. Callens, K. Vyvey, G. Kozyreff, P. Mandel, R. Shakhmuratov, O. Kocharovskaya, Controlling absorption of gamma radiation via nuclear level anticrossing. Phys. Rev. Lett. 89, 107601 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Collective lamb shift in single-photon superradiance. Science 328, 1248 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    R. Röhlsberger, H. Wille, K. Schlage, B. Sahoo, Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    O. Kocharovskaya, R. Kolesov, Y. Rostovtsev, Coherent optical control of mössbauer spectra. Phys. Rev. Lett. 82, 3593 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    L. Hau, S. Harris, Z. Dutton, C. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, J. Kitching, A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    T. Parker, Long-term comparison of caesium fountain primary frequency standards. Metrologia 47, 1 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    A. Cingöz, D. Yost, T. Allison, A. Ruehl, M. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    S.M. Cavaletto, Z. Harman, C. Buth, C.H. Keitel, X-ray frequency combs from optically controlled resonance fluorescence. arXiv:1302.3141 (2013)Google Scholar
  58. 58.
    E. Peik and C. Tamm, Nuclear laser spectroscopy of the 3.5 ev transition in \(^{229}{\rm Th}\). Europhys. Lett. 61, 181 (2003)Google Scholar
  59. 59.
    C.J. Campbell, A.G. Radnaev, A. Kuzmich, V.A. Dzuba, V.V. Flambaum, A. Derevianko, Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Y. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer-Verlag, Berlin, 2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Theory DivisionMax Planck Institute for Nuclear PhysicsHeidelbergGermany

Personalised recommendations