A Priori Estimates in Sobolev Spaces for Hörmander’s Operators

  • Marco BramantiEmail author
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


Here we deal with the theme of a-priori estimates, in suitable Sobolev spaces, for Hörmander’s operators. This involves the concept of homogeneous group, the construction of fundamental solutions, the use of abstract singular integral theories, and the development of suitable algebraic and differential geometric tools. The chapter surveys three fundamental papers of the middle 1970’s on this subject, which introduced a number of ideas and techniques which are still part of the indispensable background in this area.


Vector Field Fundamental Solution Homogeneous Group Heisenberg Group Singular Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonfiglioli, A., Uguzzoni, F.: Families of diffeomorphic sub-Laplacians and free Carnot groups. Forum Math. 16(3), 403–415 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics. Springer, Berlin (2007)Google Scholar
  3. 3.
    Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christ, M., Nagel, E., Stein, M., Wainger, S.: Singular and maximal Radon transforms: analysis and geometry. Ann. Math. 150(2), 489–577 (1999)Google Scholar
  5. 5.
    Coifman, R.R., de Guzmán, M.: Singular integrals and multipliers on homogeneous spaces. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. Rev. Un. Mat. Argentina 25, 137–143 (1970, 1971)Google Scholar
  6. 6.
    Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières. Lecture Notes in Mathematics, vol. 242, Springer, Berlin (1971)Google Scholar
  7. 7.
    David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoamericana 1(4), 1–56 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79, 373–376 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Folland, G.B.: On the Rothschild-Stein lifting theorem. Comm. Partial Differ. Equ. 2(2), 165–191 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Folland, G.B.: Applications of analysis on nilpotent groups to partial differential equations. Bull. Amer. Math. Soc. 83(5), 912–930 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Folland, G.B., Stein, E.M.: Estimates for the \(\overline{\partial }_{b}\) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27, 429–522 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Folland, G.B., Stein, E.M.: Parametrices and estimates for the \(\overline{\partial }_{b}\) complex on strongly pseudoconvex boundaries. Bull. Amer. Math. Soc. 80, 253–258 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goodman R.W.: Lifting vector fields to nilpotent Lie groups. J. Math. Pures Appl. 57(1, 9), 77–85 (1978)Google Scholar
  15. 15.
    Hörmander, L., Melin, A.: Free systems of vector fields. Ark. Mat. 16(1), 83–88 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258(1), 147–153 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Knapp, A.W., Stein, E.M.: Intertwining operators for semisimple groups. Ann. Math. 93(2), 489–578 (1971)Google Scholar
  18. 18.
    Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators. Partial differential equations, II (Turin, 1993). Rend. Sem. Mat. Univ. Politec. Torino 52(1), 29–63 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Stein, E.M.: Harmonic analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)Google Scholar
  21. 21.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton (1970)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly

Personalised recommendations