Diameter Angular Distance in Locally Inhomogeneous Models

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 38)

Abstract

Locally inhomogeneous cosmological models have been proposed since the sixties. Recently these models have been revisited in order to explain the observed accelerated expansion of the universe. Application of the optical scalar equations in such models has given estimates of the distortions in the observations of distant objects and the distance-redshift relations. In this work we analyze the influence of local inhomogeneities on the trajectory of light beams, testing the ZKDR luminosity distance with three cosmological probes: supernovae Ia, gamma-ray bursts and Hubble parameter measurements, in a wide redshift range of \(0.1<z<8.1\).

Keywords

Dust Anisotropy Recent Epoch 

Notes

Acknowledgement

C. C. acknowledges financial support by CINVESTAV-IPN to attend the IV Int. Meeting on Gravitation and Cosmology, Guadalajara, Jal. He also thanks a M. Sc. fellowship by CONACyT-Mexico. The authors acknowledge the referee of this work for a careful reading and useful suggestions to improve the text.

References

  1. 1.
    P. Astier, R. Pain, Observational Evidence of the accelerated expansion of the universe, (2012), arXiv:1204.5493Google Scholar
  2. 2.
    R. K. Sachs, J. Kristian, Observations in Cosmology, Astrophys. J. 143, 379 (1966)Google Scholar
  3. 3.
    M. Demianski, R. de Ritis, A. A. Marino, E. Piedipalumbo, Approximate diameter distance in a locally inhomogeneous universe with nonzero cosmological constant, Astron. Astrophys. 411, 33 (2003)Google Scholar
  4. 4.
    C. C. Dyer, R. C. Roeder, Distance-redshift relations for universes with some intergalactic medium, Astrophys. J. 174, L115 (1972)Google Scholar
  5. 5.
    R. Kantowski, The effects of inhomogeneities on evaluating the mass parameter and the cosmological constant, Astrophys. J. 507, 483 (1998)Google Scholar
  6. 6.
    R. Kantowski and R. C. Thomas, Distance-redshift in inhomogeneous \(\Omega_0=1\) Friedmann–Lemaitre–Robertson– Walker cosmology, Astrophys. J. 561, 491 (2001)Google Scholar
  7. 7.
    I. M. H. Etherington, On the definition of distance in general relativity, Phil. Mag. Ser. 7 15, 761 (1933)Google Scholar
  8. 8.
    B. E. Schaefer, The Hubble diagram to redshift \(\,>\,6\) from 69 gamma-ray bursts, Astrophys. J. 660, 16 (2007)Google Scholar
  9. 9.
    Y. Wang, Model-independent distance measurements for gamma-ray bursts and constraints to dark energy, Phys. Rev. D. 78, 123532 (2008)Google Scholar
  10. 10.
    R. Amanullah et al, Spectra and Hubble space Telescope light curves of six type Supernovae at \(0.511\,<\,z\,<\,1.12\) and the Union compilation, Astrophys. J. 716, 712 (2010)Google Scholar
  11. 11.
    M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, New constraints on cosmological parameters and neutrino properties using the expansion rate of the universe to \(z\,<\,1.75\), JCAP, 07, 053 (2012); arXiv:1201.6658Google Scholar
  12. 12.
    V. C. Busti, R. C. Santos, Comment on “Constraining the smoothness parameter and dark energy using observational \(H(z)\) data”, Res. Astron. Astrophys. 11, 637 (2011)Google Scholar
  13. 13.
    J. Simon, L. Verde, R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D. 77, 123001 (2008)Google Scholar
  14. 14.
    R. A. Daly, S. G. Djorgovski, K. A. Freeman et al., Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy, Astrophys. J. 677, 1 (2008)Google Scholar
  15. 15.
    V. C. Busti, R. C. Santos, J. A. S. Lima, Constraining the dark energy and smoothness parameter with SNe Ia and Gamma-Ray Bursts, Phys. Rev. D. 85, 103503 (2012); arXiv: 1202.0449Google Scholar
  16. 16.
    H. Wei, Observational constraints on cosmological models with the updated long gamma-ray bursts, JCAP. 08, 020 (2010); arXiv1004.4951Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dpto. de FísicaCentro de Investigación y de Estudios Avanzados del I. P. N.D.F.México

Personalised recommendations