Vector Fields Resembling Dark Energy

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 38)

Abstract

We review how vector fields have been introduced to produce inflationary scenarios in early universes and recently they have been invoked to mimick dark energy. These last approaches have been mostly qualitatives, requiring then to be tested with cosmological probes, in order to seriously be considered as one of the possible causes of the present accelerated expansion of the universe.

Keywords

Anisotropy Expense Triad Electromagnetism 

Notes

Acknowledgement

N. B. acknowledges Claudia Moreno and the Organizing Committee (CUCEI- UdeG) of the IV Int. Meeting on Gravitation and Cosmology for the invitation to lecture.

References

  1. 1.
    L.H. Ford, Inflation driven by a vector field. Phys. Rev. D 40, 96–7 (1989)ADSGoogle Scholar
  2. 2.
    K.E. Kunze, Primordial magnetic fields and nonlinear electrodynamics. Phys. Rev. D 77, 02353–0 (2008)CrossRefGoogle Scholar
  3. 3.
    H.J. Mosquera Cuesta, G. Lambiase, Primordial magnetic fields and gravitational baryogenesis in nonlinear electrodynamics. Phys.Rev.D 80, 02301–3 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Campanelli, P. Cea, G.L. Fogli, Inflation produced magnetic fields in nonlinear electrodynamics. Phys. Rev. D 77, 04300–1 (2008)Google Scholar
  5. 5.
    R. García-Salcedo, N.Bretón, Born-Infeld cosmologies. Int. J. of Modern Physics A 15, 4341–4353 (2000)Google Scholar
  6. 6.
    R. García-Salcedo, N. Bretón}, Nonlinear electrodynamics in Bianchi spacetimes. Class. Quantum Grav. 20, 5425–5437 (2003)Google Scholar
  7. 7.
    M. Novello, S.E. Perez Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127–213 (2008).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M. Novello, E. Goulart, J.M. Salim, S.E. Perez Bergliaffa, Cosmological effects of nonlinear electrodynamics. Class. Quantum Grav. 24, 302–1 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C.S. Camara, M.R.deGarcia Maia, J.C.Carvalho, J.A.S.Lima, Nonsingular FRW cosmology and nonlinear electrodynamics. Phys. Rev. D 69, 123504 (2004)Google Scholar
  10. 10.
    J. Beltrán Jiménez, A.L. Maroto, Avoiding the dark energy coincidence problem with a cosmic vector. AIP Conf. Proc. 1122, 107–114 (2009) Physics and Mathematics of Gravitation: Proceedings of the Spanish Relativity Meeting (2008)Google Scholar
  11. 11.
    J. Beltrán Jiménez, L. A. Maroto, Electromagnetic nature of dark energy. J. Cosmol. Astropart. JCAP 03, 016 (2009)Google Scholar
  12. 12.
    L. Labun, J. Rafelski, Dark energy simulacrum in nonlinear electrodynamics. Phys. Rev. D 81, 06502–6 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Mottola, in Conformal Invariance, Dynamical Dark Energy and the CMB, (2011) "Proceedings of the XLVth Rencontres de Moriond, 2010 Cosmology, ed. by E. Auge, J. Dumarchez, J. Tran Tranh Van, (Vietnam, The Gioi Publishers) (2010) [arXiv:1103.1613].Google Scholar
  14. 14.
    M. Novello, S.E. Perez Bergliaffa, J.M. Salim, Nonlinear electrodynamics and the acceleration of the universe, Phys. Rev. D, 69, 127301 (2004)Google Scholar
  15. 15.
    E. Bergshoeff, E. Sezgin, C.N. Pope, P.K. Townsend, The Born-Infeld action from conformal invariance of the open superstring. Phys. Lett. B 188, 7–0 (1987)CrossRefGoogle Scholar
  16. 16.
    M. Born, L. Infeld, Foundations of the new field theory. Proc. Roy. Soc. Lond. A144, 125 (1934).Google Scholar
  17. 17.
    E. Elizalde, J.E. Lidsey, S. Nojiri, S.D. Odintsov, Born-Infeld quantum condensate as dark energy in the universe. Phys. Lett. B 574, 1 (2003)ADSCrossRefMATHGoogle Scholar
  18. 18.
    D.V. Gal’tsov, M.S. Volkov, Yang-Mills cosmology: cold matter for a hot universe. Phys. Lett. B 256, 17–21 (1991)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    R.C. Tolman, P. Ehrenfest, Temperature Equilibrium in a static gravitational field. Phys. Rev. 36, 179–1 (1930)ADSCrossRefGoogle Scholar
  20. 20.
    D.N. Vollick, Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation. Phys. Rev. D 78, 06352–4 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Armendáriz-Picón, Could dark energy be vector-like?. J. Cosm. Astrop. Phys. JCAP07, 007 (2004).Google Scholar
  22. 22.
    V.V. Dyadichev, D.V. Gal’tsov, andA.G. Zorin, M. Yu, Non-Abelian Born-Infeld cosmology. Phys. Rev. D 65, 08400–7 (2002)Google Scholar
  23. 23.
    N. Suzuki et al., The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above \(z>1\) and Building an Early-Type-Hosted Supernova Sample [arXiv:1105.3470]Google Scholar
  24. 24.
    M. Moresco et al., New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z∼1.75 [arXiv:1201.6658]Google Scholar
  25. 25.
    Y. Wang, Model-Independent Distance Measurements from Gamma-Ray Bursts and Constraints on Dark Energy. Phys. Rev. D 78, (2008) 123532 [arXiv:0809.0657]Google Scholar
  26. 26.
    H. Wei, Observational constraints on cosmological models with the updated long gamma-ray burst. JCAP 08, 020 (2010) [arXiv:1004.4951]Google Scholar
  27. 27.
    27. N. Bretón, R. Lazkoz, A. Montiel, Observational constraints on electromagnetic Born- Infeld cosmologies. JCAP 10, 013 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dpto. de FísicaCentro de Investigación y de Estudios Avanzados del I. P. N.MéxicoMéxico

Personalised recommendations