Reconfigurable Production Systems - An Appraisal of Applied Production Breakdown Solution Strategies

  • André UllrichEmail author
  • Sander Lass
  • Thomas Hein
Conference paper


Due to international competition and frequently changing customer demands, manufacturers production requirements become more complex. Production breakdowns demand for efficient fault solutions. Commonly, this problem is often tried to be tackled by the design of the production systems architecture. An alternative way is the consideration of the system behaviour. The paper proposes an approach based on a behaviour pattern concept for identifying alternate fault and reconfiguration solutions. Further, this work deals with typically applied approaches and strategies for breakdown solution and illustrates appraisements for a use case due to hybrid simulation.


Alternate fault solution Reconfiguration of production systems Survey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lass, S.: A new Approach to Simulation in Production Management. In: ElMaraghy, H.A. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability. Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2011), Montreal, Canada, October 2-5, pp. 586–591. Springer (2011)Google Scholar
  2. 2.
    Neumann, M., Constantinescu, C., Westkämper, E.: A Method for Multi-Scale Modeling of Production Systems. In: ElMaraghy, H.A. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability. Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2011), Montreal, Montreal, Canada, October 2-5, pp. 471–475. Springer (2011)Google Scholar
  3. 3.
    Billaut, J.-C., Moukrim, A., Sanlaville, E.: Introduction to Flexibility and Robustness in Scheduling. In: Billaut, J.-C., Moukrim, A., Sanlaville, E. (eds.) Flexibility and Robustness in Scheduling, pp. 15–34. ISTE Ltd., London (2008)CrossRefGoogle Scholar
  4. 4.
    Habicht, C., Neise, P., Cisek, R.: Configuration of Changeable Production Systems (in German: Gestaltung wandlungsfähiger Produktionssysteme). ZWF 97, 441–445 (2002)Google Scholar
  5. 5.
    Eversheim, W.: Industrial Engineering and –technique (in German: Produktionstechnik und –verfahren). In: Kern, W., et al. (eds.) Handwörterbuch der Produktionswirtschaft (HWProd), 2. Auflage Stuttgart, Schäffer-Poeschel (1996)Google Scholar
  6. 6.
    Bellgran, M., Säfsten, K.: Production Development: Design and Operations of Production Systems. Springer, London (2010)CrossRefGoogle Scholar
  7. 7.
    Ohno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press, New York (1988)Google Scholar
  8. 8.
    Windt, K., Jeken, O.: Allocation Flexibility - A New Flexibility Type as an Enabler for Autonomous Control in Production Logistics. In: 42nd CIRP Conference on Manufacturing Systems (2009)Google Scholar
  9. 9.
    ElMaraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms. Intenational Journal of Flexible Manufacturing Systems. Special Edition: Reconfigurable Manufacturing Systems 17(4), 261–276 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Furukawa, M., Watanabe, M.: Scheduling for Autonomous Distributed Production System Modeled by Adaptive Learning Agents. In: Kakazu, Y., Wada, M., Sado, T. (eds.) Intelligent Autonomous Systems, pp. 655–662. IOS Press, Amsterdam (1998)Google Scholar
  11. 11.
    Bruccoleri, M., Pasek, Z.J., Koren, Y.: Operation management in reconfigurable manufacturing systems: Reconfiguration for error handling. International Journal of Production Economics 100(1), 87–100 (2006)CrossRefGoogle Scholar
  12. 12.
    Mehrabi, M.G., Ulsoy, A.G., Koren, Y.: Reconfigurable manufacturing systems: key to future manufacturing. Journal of Intelligent Manufacturing 11(4), 403–419 (2000)CrossRefGoogle Scholar
  13. 13.
    Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable manufacturing systems. CIRP Annals-Manufacturing Technology 48(2), 527–540 (1999)CrossRefGoogle Scholar
  14. 14.
    Gronau, N., Sielaff, S., Röchert-Voigt, R., Stein, M., Weber, E.: Change Capability of Protection Systems. In: Duncan, K., Brebbia, C.A. (eds.) Disaster Management and Human Health Risk: Reducing Risk, Improving Outcomes (Wit Transactions on the Built Environment), pp. 87–95. WIT Press, Ashurst Lodge (2009)CrossRefGoogle Scholar
  15. 15.
    Ruiu, M., Ullrich, A., Weber, E.: Change Capability as a Strategic Success Factor - A Behavior Pattern Approach for Operationalizing Change Capability. In: Proceedings of the Conference on Strategic Management 2012, Bor, Serbia, May 25-27, pp. 23–31 (2012)Google Scholar
  16. 16.
    Samosz, E.: Compendium of foreign words in written and spoken German language (Handbuch der Fremdwörter in der deutschen Schrift- und Umgangssprache). Arnoldische Buchhandlung, Leipzig (1886)Google Scholar
  17. 17.
    LUPO, (cited January 15, 2013)
  18. 18.
    Lass, S., Gronau, N.: Efficent Analysis of Production Processes with a Hybrid Simulation Environment. In: Proceeding of the 22nd International Conference of Flexible Automation and Intelligent Manufacturing (2012)Google Scholar
  19. 19.
    Gronau, N., Weber, E. (2009): Change Capability: Generic Strategies for Handling Environmental Changes - Work Report. (Wandlungsfähigkeit: Generische Strategien zur Handhabung von Veränderungen in der Umwelt) WI-2009-07 Lehrstuhl für Wirtschaftsinformatik und Electronic Government (2009)Google Scholar
  20. 20.
    Meijer, G.: Smart Sensor Systems. John Wiley and Sons (2008)Google Scholar
  21. 21.
    Lass, S., Hennig, G.: Smart Sensor in Manufacturing. Productivity Management 17(2), 16–19 (2012)Google Scholar
  22. 22.
    Knuth, D.E.: The Art of Computer Programming 1: Fundamental Algortihms. Addision-Weasley (1968)Google Scholar
  23. 23.
    Erlach, K.: Value Stream Design, the Way to a Lean Enterprise. Springer (2007) (in German)Google Scholar
  24. 24.
    Gronau, N., Ullrich, A., Weber, E., Thim, C.: Creativity Techniques as Operative Knowledge Management Tools - A Case Study. In: Proceedings of the 13th European Conference on Knowledge Management, September 6-7, pp. 425–432. Academic Conferences Limited. Univisidad Politcnica de Cartagena, Spain (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chair of Business Information Systems and Electronic GovernmentPotsdamGermany

Personalised recommendations