Skip to main content

Topological Methods in 3-Dimensional Contact Geometry

An Illustrated Introduction to Giroux’s Convex Surfaces Theory

  • Chapter
Contact and Symplectic Topology

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 26))

Abstract

These notes provide an introduction to Giroux’s theory of convex surfaces in contact 3-manifolds and its simplest applications. The first goal is to explain why all the information about a contact structure in a neighborhood of a generic surface is encoded by finitely many curves on the surface. Then we will describe the bifurcations that happen in generic families of surfaces (with one or sometimes two parameters). We sketch a proof of the fact that the standard contact structure on S 3 is tight (due to Bennequin) and that all tight contact structures on S 3 are isotopic to it (due to Eliashberg).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may worry about the fact that \(S \times \mathbb {R}\) is non-compact but here the vector field constructed during the proof of this theorem is tangent to S t which is compact for all t hence its flow is well defined for all times.

References

  1. D. Bennequin, Entrelacements et équations de Pfaff, in Third Schnepfenried Geometry Conference, vol. 1. Schnepfenried, 1982 (1983), pp. 87–161

    Google Scholar 

  2. V. Colin, E. Giroux, K. Honda, Finitude homotopique et isotopique des structures de contact tendues. Publ. Math. Inst. Hautes Études Sci. 109, 245–293 (2009). doi:10.1007/s10240-009-0022-y (French, with French summary)

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98(3), 623–637 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Y. Eliashberg, New invariants of open symplectic and contact manifolds. J. Am. Math. Soc. 4(3), 513–520 (1991). doi:10.2307/2939267. MR1102580 (92c:58030)

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier (Grenoble) 42(1–2), 165–192 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Etnyre, Convex surfaces in contact geometry (2004), available at http://people.math.gatech.edu/~etnyre/preprints/papers/surfaces.pdf

  7. H. Geiges, An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  8. E. Giroux, Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math. 141(3), 615–689 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. E. Giroux, Structures de contact sur les variétés fibrées en cercles au-dessus d’une surface. Comment. Math. Helv. 76(2), 218–262 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Giroux, Sur les transformations de contact au-dessus des surfaces, in Essays on Geometry and Related Topics, Vol. 1, 2. Monogr. Enseign. Math., vol. 38 (Enseignement Math, Geneva, 2001), pp. 329–350 (French)

    Google Scholar 

  12. J.W. Gray, Some global properties of contact structures. Ann. Math. 69, 421–450 (1959)

    Article  MATH  Google Scholar 

  13. K. Honda, Contact geometry, available at http://www-bcf.usc.edu/~khonda/math599/notes.pdf

  14. P. Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, in Colloque Géom. Diff. Globale, Bruxelles, 1958 (Centre Belge Rech. Math., Louvain, 1959), pp. 37–59 (French)

    Google Scholar 

  15. A. Mori, On the violation of Thurston-Bennequin inequality for a certain non-convex hypersurface (2011), available at http://arxiv.org/abs/1111.0383

  16. J. Palis Jr., W. de Melo, Geometric Theory of Dynamical Systems (Springer, New York, 1982). An introduction; Translated from the Portuguese by A.K. Manning

    Book  MATH  Google Scholar 

  17. J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds. Publ. Math. IHÉS 43, 5–46 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Massot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Copyright jointly owned by the János Bolyai Mathematical Society and Springer

About this chapter

Cite this chapter

Massot, P. (2014). Topological Methods in 3-Dimensional Contact Geometry. In: Bourgeois, F., Colin, V., Stipsicz, A. (eds) Contact and Symplectic Topology. Bolyai Society Mathematical Studies, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-02036-5_2

Download citation

Publish with us

Policies and ethics