Skip to main content

Understanding the FinFET Mobility by Systematic Experiments

  • Chapter
  • First Online:
Toward Quantum FinFET

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

  • 2749 Accesses

Abstract

The impact of the surface orientation, strain, fin doping, and gate stack on SOI double-gate FinFET mobility is systematically investigated. Impact of channel material, temperature, and fin width were also touched upon to better understand the trends. For the unstrained case, the (110) sidewall electron mobility is very close to the (100) sidewall electron mobility irrespective of the fin doping level and gate stack. This weak dependence of electron mobility to surface orientation distinguishes the FinFETs from the bulk planar MOSFETs, where (100) electron mobility is systematically reported to be much higher than that of (110). On the other hand, the (110) sidewall hole mobility is substantially higher than the (100) sidewall hole mobility in FinFETs, as in the planar case. Both the (100)/<100> and (110)/<110> FinFET electron mobility can be improved with tensile strain. It is also confirmed that the (110)/<110> FinFET hole mobility can be significantly improved with compressive strain while the (100)/<100> hole mobility is sensitive to neither compressive nor tensile strain. Compared to Si, the use of a SiGe channel increases the hole mobility drastically, and even further improvement is achievable by external compressive stress. Overall, the experimental results in this chapter suggest that the (110)/<110> Si FinFETs conventionally built on standard (100) wafers offer simultaneously high electron and hole mobility, which can be further improved by tensile and compressive stress, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, C.-H., Kambhampati, R., Miller, R.J., Hook, T.B., Bryant, A., Haensch, W. et al.: Channel doping impact on FinFETs for 22nm and beyond. In: Symposium on VLSI technology. Digest of technical papers, pp. 15–16 (2012)

    Google Scholar 

  2. Lochtefeld, A., Djomehri, I.J., Samudra, G., Antoniadis, D.A.: New insights into carrier transport in n-MOSFETs. IBM J. Res. Dev. 46(2/3), 347–357 (2002)

    Article  Google Scholar 

  3. Nayfeh, O.M., Yu, S., Antoniadis, D.A.: On the relationship between carrier mobility and velocity in sub-50 nm MOSFETs via calibrated Monte Carlo simulation. In: SISPAD, pp.117–120 (2004)

    Google Scholar 

  4. Khakifirooz, A., Antoniadis, D.: Transistor performance scaling: the role of virtual source velocity and its mobility dependence. In: IEDM technical digest, pp. 667–670 (2006)

    Google Scholar 

  5. Jan, C.-H., Bhattacharya, U., Brain, R., Choi, S.-J., Curello, G., Gupta, G. et al.: A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In: IEDM technical digest, pp. 44–47 (2012)

    Google Scholar 

  6. Akarvardar, K., Young, C.D., Veksler, D., Ang, K.-W., Ok, I., Rodgers, M., et al.: Performance and variability in multi-VT FinFETs using fin doping. In: Proceedings of the VLSI TSA, pp. 1–2 (2012)

    Google Scholar 

  7. Young, C.D., Akarvardar, K., Baykan, M.O., Matthews, K., Ok, I., Ngai, T., et al.: (110) and (100) Sidewall-oriented FinFETs: a performance and reliability investigation. Solid State Electron. 78, 2–10 (2012)

    Article  ADS  Google Scholar 

  8. Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  9. Young, C.D., Akarvardar, K., Matthews, K., Baykan, M.O., Pater, J., Ok, I., et al.: Electrical characterization and reliability assessment of double-gate FinFETs. ECS Trans. 50(4), 201–206 (2013)

    Article  Google Scholar 

  10. Momose, H.S., Ohguro, T., Kojima, K., Nakamura, S.-I., Toyoshima, Y.: 1.5-nm gate oxide CMOS on (110) surface-oriented Si substrate. IEEE Trans. Electron Dev. 50(4), 1001–1008 (2003)

    Article  ADS  Google Scholar 

  11. Yang, M., Chan, V., Chan, K., Shi, L., Fried, D., Stathis, J., et al.: Hybrid-orientation technology (HOT): opportunities and challenges. IEEE Trans. Electron Dev. 53(5), 965–978 (2006)

    Article  ADS  Google Scholar 

  12. Mereu, B., Rossel, C., Gusev, E.P., Yang, M.: The role of Si orientation and temperature on the carrier mobility in metal oxide semiconductor field-effect transistors with ultrathin HfO2 gate dielectrics. J. Appl. Phys. 100, 014504 (2006)

    Article  ADS  Google Scholar 

  13. Trojman, L., Pantisano, L., Ferain, I., Severi, S., Maes, H.E., Groeseneken, G.: Mobility and dielectric quality of 1-nm EOT HfSiON on Si(110) and (100). IEEE Trans. Electron Dev. 55(12), 3414–3420 (2008)

    Article  ADS  Google Scholar 

  14. Sayama, H., Nishida, Y., Oda, H., Oishi, T., Shimizu, S., Kunikiyo, T., et al.: Effect of <100> channel direction for high performance SCE immune pMOSFET with less than 0.15μm gate length. In: IEDM technical digest, pp. 657–660 (1999)

    Google Scholar 

  15. Matsumoto, T., Maeda, S., Dang, H., Uchida, T., Ota, K., Hirano, Y., et al.: Novel SOI wafer engineering using low stress and high mobility CMOSFET with <100>-channel for embedded RF/analog applications. In: IEDM technical digest, pp. 663–666 (2002)

    Google Scholar 

  16. Lee, C.-W., Afzalian, A., Ferain, I., Yan, R., Dehdashti, N., Byun, K.-Y., et al.: Comparison of different surface orientation in narrow fin MuGFETs. Microelectron. Eng. 86, 2381–2384 (2009)

    Article  Google Scholar 

  17. Chowdhury, M.M., Fossum, J.G.: Physical insights on electron mobility in contemporary FinFETs. IEEE Electron Device Lett. 27(6), 482–485 (2006)

    Article  ADS  Google Scholar 

  18. Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Dev. ED-29, 292–295 (1982)

    Article  Google Scholar 

  19. Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234 (1996)

    Article  ADS  Google Scholar 

  20. Arora, N.D., Gildenblat, G.S.H.: A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation. IEEE Trans. Electron Dev. ED-34, 89–93 (1987)

    Article  Google Scholar 

  21. Jeon, D.S., Burk, D.A.: MOSFET electron inversion layer mobilities – a physically based semi-empirical model for a wide temperature range. IEEE Trans. Electron Dev. 36(8), 1453–1463 (1989)

    Article  ADS  Google Scholar 

  22. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in SiMOSFETs: part I—effects of substrate impurity concentration. IEEE Trans. Electron Dev. 41(12), 2357–2368 (1994)

    Article  ADS  Google Scholar 

  23. Krishnan, S.A., Rusty Harris, H., Kirsch, P.D., Krug, C., Quevedo-Lopez, M., Young, C. et al.: High performing pMOSFETs on Si(110) for application to hybrid orientation technologies – comparison of HfO2 and HfSiON. In: IEDM technical digest, pp. 1-4 (2006)

    Google Scholar 

  24. Toniutti, P., Palestri, P., Esseni, D., Driussi, F., De Michielis, M., et al.: On the origin of the mobility reduction in n- and p-metal–oxide–semiconductor field effect transistors with hafnium based metal gate stacks. J. Appl. Phys. 112, 034502 (2012)

    Article  ADS  Google Scholar 

  25. Baykan, M.O., Young, C.D., Akarvardar, K., Majhi, P., Hobbs, C., Kirsch, P., et al.: Physical insights on comparable electron transport in (100) and (110) double-gate fin field-effect transistors. Appl. Phys. Lett. 100, 123502 (2012)

    Article  ADS  Google Scholar 

  26. Irisawa, T., Numata, T., Tezuka, T., Usuda, K., Sugiyama, N., Takagi, S.-I.: Device design and electron transport properties of uniaxially strained-SOI tri-gate nMOSFETs. IEEE Trans. Electron Dev. 55(2), 649–654 (1994)

    Article  ADS  Google Scholar 

  27. Young, C.D., Baykan, M.O., Agrawal, A., Madan, H., Akarvardar, K., Hobbs, C., et al.: Critical discussion on (100) and (110) orientation dependent transport: nMOS Planar and FinFET. In: Symposium on VLSI technology. Digest of technical papers, pp. 18–19 (2011)

    Google Scholar 

  28. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., Elewa, T.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8(9), 410–412 (1987)

    Article  Google Scholar 

  29. Auth, C., Cappellani, A., Chun, J.-S., Dalis, A., Davis, A., Ghani, T., et al.: 45nm high-k + metal gate strain-enhanced transistors. In: Symposium on VLSI technology. Digest of technical papers, pp. 128–129 (2008)

    Google Scholar 

  30. Suthram, S., Hussain, M.M., Harris, H.R., Smith, C., Tseng, H.-H., Jammy, R., et al.: Comparison of uniaxial wafer bending and contact-etch-stop-liner stress induced performance enhancement on double-gate FinFETs. IEEE Electron Device Lett. 29(5), 480–482 (2008)

    Article  ADS  Google Scholar 

  31. Akarvardar, K., et al.: Unpublished SEMATECH data (2011)

    Google Scholar 

  32. Akarvardar, K., Rodgers, M., Kaushik, V., Johnson, C.S., Chong, H., Ok, I., et al.: Impact of NiPt thickness scaling on contact resistance from thin-body FD SOI to trigate FETs. IEEE Electron Device Lett. 33(5), 631–633 (2012)

    Article  ADS  Google Scholar 

  33. Chu, M., Sun, Y., Aghoram, U., Thompson, S.E.: Strain: a solution for higher carrier mobility in nanoscale MOSFETs. Annu. Rev. Mater. Res. 39, 203–229 (2009)

    Article  ADS  Google Scholar 

  34. Shin, K., Chui, C.O., King, T.-J.: Dual stress capping layer enhancement study for hybrid orientation FinFET CMOS technology. In: IEDM technical digest, pp. 988–991 (2005)

    Google Scholar 

  35. Ghibaudo, G.: New method for the extraction of MOSFET parameters. Electron. Lett. 24(9), 543–545 (1988)

    Article  Google Scholar 

  36. Irisawa, T., Numata, T., Tezuka, T., Usuda, K., Nakaharai, S., Hirashita, N., et al.: High performance multi-gate pMOSFETs using uniaxially-strained SGOI channels. In: IEDM technical digest, pp. 709–712 (2005)

    Google Scholar 

  37. Ok, I., Akarvardar, K., Lin, S., Baykan, M.O., Young, C.D., Hung, P.Y., et al.: Strained SiGe and Si FinFETs for high performance logic with SiGe/Si stack on SOI. In: IEDM technical digest, pp. 776–779 (2010)

    Google Scholar 

  38. Smith, C.E., Adhikari, H., Lee, S.-H., Coss, B., Parthasarathy, S., Young, C., et al.: Dual channel FinFETs as a single high-k/metal gate solution beyond 22nm node. In: IEDM technical digest, pp. 1–4 (2009)

    Google Scholar 

  39. Akarvardar, K., Ok, I., et al.: Unpublished SEMATECH data (2011)

    Google Scholar 

  40. Matthews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974)

    ADS  Google Scholar 

  41. Nadeau, J., Deeb, C., Hung, P.Y., Ok, I., Hobbs, C.: Application of scanning transmission electron microscopy (STEM) – based techniques for development of novel Si/SiGe on SOI FinFET structures. In: Proceedings of the 2011 Frontiers of characterization and metrology conference (2011)

    Google Scholar 

  42. Cheng, K., Khakifirooz, A., Loubet, N., Luning, S., Nagumo, T., Vinet, M., et al.: High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained SiGe channel PFET. In: IEDM technical digest, pp. 419–422 (2012)

    Google Scholar 

  43. Andrieu, F., Ernst, T., Romanjek, K., Weber, 0., Renard, C., Hartmann, J.-M., et al.: SiGe channel p-MOSFETs scaling-down. In: Proceedings of the ESSDERC, pp. 267–270 (2003)

    Google Scholar 

  44. Veloso, A., Witters, L., Demand, M., Ferain, I., Son, N.J., Kaczer, B., et al.: Flexible and robust capping-metal gate integration technology enabling multiple-VT CMOS in MuGFETs. In: Symposium on VLSI technology. Digest of technical papers, pp. 14–15 (2008)

    Google Scholar 

  45. Singanamalla, R., Boccardi, G., Tseng, J., Petry, J., Vellianitis, G., van Dal, M.J.H., et al.: Multi-VT engineering in highly scaled CMOS bulk and FinFET devices through ion implantation into the metal gate stack featuring a 1.0nm EOT High-K oxide. In: Proceedings of the VLSI-TSA technical digest, pp. 112–113 (2010)

    Google Scholar 

  46. Akarvardar, K., Young, C.D., Baykan, M.O., Ok, I., Ngai, T., Ang, K.-W., et al.: Impact of fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities. IEEE Electron Dev. Lett. 33(3), 351–353 (2012)

    Article  ADS  Google Scholar 

  47. Cheng, W., Teramoto, A., Hirayama, M., Sugawa, S., Ohmi, T.: Impact of improved high-performance Si (110)-oriented metal–oxide–semiconductor field-effect transistors using accumulation-mode fully depleted silicon-on-insulator devices. Jpn. J. Appl. Phys. 45, 3110–3116 (2006)

    Article  ADS  Google Scholar 

  48. Colinge, J.-P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  ADS  Google Scholar 

  49. Afzalian, A., Lederer, D., Lee, C.-W., Yan, R., Xiong, W., Cleavelin, C., et al.: Multi-gate MOSFETs: accumulation versus enhancement mode. In: Proceedings of the IEEE silicon nanoelectron workshop, pp. 1–6 (2008)

    Google Scholar 

  50. Chen, K., Wann, H.C., Ko, P.K., Hu, C.: The impact of device scaling and power supply change on CMOS gate performance. IEEE Electron Device Lett. 17(5), 202–204 (1996)

    Article  ADS  Google Scholar 

  51. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFET’s: part II-effects of surface orientation. IEEE Trans. Electron Dev. 41(12), 2363–2368 (1994)

    Article  ADS  Google Scholar 

  52. Clark, R.D., Aoyama, S., Consiglio, S., Nakamura, G., Leusink, G.J.: Physical and electrical effects of the Dep-Anneal-Dep-Anneal (DADA) process for HfO2 in high K/metal gate stacks. ECS Trans. 35(4), 815–834 (2011)

    Article  Google Scholar 

  53. Xiong, W.W., Cleavelin, C.R., Hsu, C.-H., Ma, M., Schruefer, K., Von Arnim, K., et al.: Intrinsic advantages of SOI multiple-gate MOSFET (MuGFET) for low power applications. ECS Trans. 6(4), 59–69 (2007)

    Article  Google Scholar 

  54. Conzatti, F., Serra, N., Esseni, D., De Michielis, M., Paussa, A., Palestri, P., et al.: Investigation of strain engineering in FinFETs comprising experimental analysis and numerical simulations. IEEE Trans. Electron Dev. 58(6), 1583–1593 (2011)

    Article  ADS  Google Scholar 

  55. Muller, M., Duguay, S., Guillaumot, B., Garros, X., Leroux, C., Tavel, B., et al.: Towards a better EOT-mobility trade-off in high-K oxide/metal gate CMOS devices. In: Proceedings of the ESSDERC, pp. 367–370 (2003)

    Google Scholar 

  56. Yang, M., Gusev, E.P., Ieong, M., Gluschenkov, O., Boyd, D.C., Chan, K.K.: Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics. IEEE Electron Device Lett. 24(5), 339–341 (2003)

    Article  ADS  Google Scholar 

  57. Endo K, Ishikawa Y, Liu Y, Masahara M, Matsukawa T, O’uchi S-I, Ishii K, Yamauchi H, Tsukada J, Suzuki E.: Experimental Evaluation of Effects of Channel Doping on Characteristics of FinFETs. IEEE Electron Device Lett. 28(12), 1123–1125 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerem Akarvardar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akarvardar, K., Young, C.D., Baykan, M.O., Hobbs, C.C. (2013). Understanding the FinFET Mobility by Systematic Experiments. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_3

Download citation

Publish with us

Policies and ethics