Skip to main content

Modeling FinFETs for CMOS Applications

  • Chapter
  • First Online:
Toward Quantum FinFET

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 17))

  • 2544 Accesses

Abstract

As FinFETs are being under intense research explorations today, the corresponding models are essential for understanding their electronic properties and also for future developments of the technology itself. A compact model for FinFETs with double-gate configuration is developed to assist FinFET-based integrated circuit design. The core model includes descriptions of both the current–voltage and terminal charge–voltage characteristics of FinFETs and is suitable for their circuit simulations. A physics-based hot carrier effect model for prediction of FinFETs performance degradation due to the interface state is reported further based on the core model. For future generations of FinFETs, the quantum confinement is becoming more important and is coupled with the widely used strain engineering. Tight binding modeling shows that the effects of a certain amount of uniaxial strain will be less effective for the on-current improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors. http://www.itrs.net (2011)

  2. Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., McIntyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, S., Reynolds, T., Roesler, J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: IEEE symposium on VLSI technology, Honolulu, HI, USA, 12–14 June 2012

    Google Scholar 

  3. Lin, C.H., Haensch, W., Oldiges, P., Wang, H., Williams, R., Chang, J., Guillorn, M., Bryant, A., Yamashita, T., Standaert, T., Bu, H., Leobandung, E., Khare, M.: Modeling of width-quantization-induced variations in logic FinFETs for 22nm and beyond. In: IEEE symposium on VLSI technology, Hyoto, Japan, 13–17 June 2011

    Google Scholar 

  4. Lu, D.D., Dunga, M.V., Lin, C.H., Niknejad, A.M., Hu, C.: A multi-gate MOSFET compact model featuring independent-gate operation. In: IEEE international electron device meeting, Washington, DC, USA, 10–12 Dec 2007

    Google Scholar 

  5. Iniguez, B., Fjeldly Tor, A., Lazaro, A., Danneville, F., Deen, M.J.: Compact-modeling solutions for nanoscale double-gate and gate-all-around MOSFETs. IEEE Trans. Electron Dev. 53, 2128–2142 (2006)

    Article  ADS  Google Scholar 

  6. Taur, Y., Liang, X., Wang, W., Lu, H.: A continuous, analytical drain-current model for double-gate MOSFETs. IEEE Electron Device Lett. 25, 107–109 (2004)

    Article  ADS  Google Scholar 

  7. Oritiz-Conde, A., Garcia-Sonchez, F.J., Muci, J.: Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs. Solid State Electron. 49, 640–647 (2005)

    Article  ADS  Google Scholar 

  8. Sallese, J.M., Krummenacher, F., Prégaldiny, F., Lallement, C., Roy, A., Enz, C.: A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism. Solid State Electron. 49, 485–489 (2005)

    Article  ADS  Google Scholar 

  9. Kim, S., Lee, J.: Hot carrier-induced degradation in bulk FinFETs. IEEE Electron Device Lett. 26, 566–568 (2005)

    Article  ADS  Google Scholar 

  10. Yu, B., Chang, L., Ahmed, S., Wang, H., Bell, S., Yang, C., Tabery, C., Ho, C., Xiang, Q., King, T.-J., Bokor, J., Hu, C., Lin, M., Kyser, D.: FinFET scaling to 10nm channel length. In: IEEE international electron device meeting, San Francisco, CA, USA, 8–11 Dec 2002

    Google Scholar 

  11. Li, M.-F., Huang, D., Shen, C., Yang, T., Liu, W.J., Liu, Z.: Understand NBTI mechanism by developing novel measurement techniques. IEEE Trans. Device Mater. Reliab. 8, 62–71 (2008)

    Article  Google Scholar 

  12. He, J., Zhang, X., Huang, R., Wang, Y.: Application of forward gated-diode R–G current method in extracting F–N stress-induced interface traps in SOI NMOSFETs. Microelectron. Reliab. 42, 145–148 (2002)

    Article  Google Scholar 

  13. Gnani, E., Gnudi, A., Reggiani, S., Rudan, M., Baccarani, G.: Band structure effects on the current–voltage characteristics of SNW-FETs. In: IEEE international electron device meeting, Washington, DC, USA, 10–12 Dec 2007

    Google Scholar 

  14. Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Electron Dev. 55, 1286–1297 (2008)

    Article  ADS  Google Scholar 

  15. Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effect on three dimensional, two dimensional, and one dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010)

    Article  ADS  Google Scholar 

  16. Jeong, Y., Miyaji, K., Saraya, T., Hiramoto, T.: Silicon nanowire n-type metal-oxide-semiconductor field-effect transistors and single-electron transistors at room temperature under uniaxial tensile strain. J. Appl. Phys. 105, 084514 (2009)

    Article  ADS  Google Scholar 

  17. Pao, H.C., Sah, C.T.: Effects of diffusion current on the characteristics of metal-oxide (insulator)-semiconductor transistors. Solid State Electron. 9, 927–937 (1966)

    Article  ADS  Google Scholar 

  18. Ward, D., Dutton, R.: A charge-oriented model for MOS transistor capacitances. IEEE J. Solid State Circ. 13, 703–708 (1978)

    Article  Google Scholar 

  19. Zhang, L., Zhang, J., Song, Y., Lin, X., He, J., Chan, M.: Charge-based model for symmetric double-gate MOSFETs with inclusion of channel doping effect. Microelectron. Reliab. 50, 1070–1602 (2010)

    Google Scholar 

  20. Accellera Organization: Verilog-AMS language reference manual, ver. 2.3.1 (2009)

    Google Scholar 

  21. Ma, C., Zhang, L., Zhang, C., Zhang, X., He, J., Zhang, X.: A physical based model to predict performance degradation of FinFET accounting for interface state distribution effect due to hot carrier injection. Microelectron. Reliab. 51, 337–341 (2011)

    Article  Google Scholar 

  22. Ancona, M.G., Saks, N.S., McCarthy, D.: Lateral distribution of hot-carrier-induced interface traps in MOSFET’s. IEEE Trans. Electron Dev. 35, 2221–2228 (1988)

    Article  ADS  Google Scholar 

  23. Park, T., Cho, H.J., Choe, J.D., Cho, I.H., Park, D., Yoon, E., Lee, J.-H.: Characteristics of body-tied triple-gate pMOSFETs. IEEE Electron Device Lett. 25, 798–800 (2004)

    Article  ADS  Google Scholar 

  24. Kang, H., Han, J.-W., Choi, Y.-K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29, 927–930 (2008)

    Article  ADS  Google Scholar 

  25. Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEEE international electron device meeting, Washington, DC, USA, 5–7 Dec 2005

    Google Scholar 

  26. Thompson, S.E., Sun, G., Wu, K., Lim, J., Nishida, T.: Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs. In: IEEE international electron device meeting, San Francisco, USA, 13–15 Dec 2004

    Google Scholar 

  27. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  ADS  MATH  Google Scholar 

  28. Zhang, L., Lou, H., He, J., Chan, M.: Uniaxial strain effects on electron ballistic transport in gate-all-around silicon nanowire MOSFETs. IEEE Trans. Electron Dev. 58, 3829–3836 (2011)

    Article  ADS  Google Scholar 

  29. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69, 115201 (2004)

    Article  ADS  Google Scholar 

  30. Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G.: Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization. Phys. Rev. B 81, 125202 (2010)

    Article  ADS  Google Scholar 

  31. Lee, S., Oyafuso, F., Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004)

    Article  ADS  Google Scholar 

  32. Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Oxford (1985)

    Google Scholar 

  33. Maegawa, T., Yamauchi, T., Hara, T., Tsuchiya, H., Ogawa, M.: Strain effects on electronic bandstructure in nanoscaled silicon: from bulk to nanowire. IEEE Trans. Electron Dev. 56, 553–559 (2009)

    Article  ADS  Google Scholar 

  34. Lundstrom, M.S., Guo, J.: Nanoscale transistors: device physics, modeling and simulation. Springer, New York (2006)

    Google Scholar 

  35. Hashemi, P., Gomez, L., Hoyt, J.L.: Gate-all-around n-MOSFETs with uniaxial tensile strain-induced performance enhancement scalable to sub-10nm nanowire diameter. IEEE Electron Device Lett. 30, 401–403 (2009)

    Article  ADS  Google Scholar 

  36. Feste, S.F., Knoch, J., Habicht, S., Buca, D., Zhao, Q.T., Mantl, S.: Silicon nanowire FETs with uniaxial tensile strain. Solid State Electron. 53, 1257–1262 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, L., Ma, C., Lin, X., He, J., Chan, M. (2013). Modeling FinFETs for CMOS Applications. In: Han, W., Wang, Z. (eds) Toward Quantum FinFET. Lecture Notes in Nanoscale Science and Technology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-02021-1_11

Download citation

Publish with us

Policies and ethics