Skip to main content

Interfaces in III–V High Efficiency Solar Cells

Part of the Springer Series in Materials Science book series (SSMATERIALS,volume 190)

Abstract

The III–V multijunction solar cells consist of numerous layers with a transition between semiconductors of different composition—hetero-interfaces, which can impair the quality and performance of the cells. The properties of the hetero-interfaces and their impact to GaInP/GaAs/Ge solar cells performance are explored in this chapter. It was demonstrated that among all interface-related factors (like recombination at the interface states) the undesired potential barriers at the isotype hetero-interfaces have the most significant influence on cell performance at high sun concentration. In particular, a significant valence band offset at the hetero-interfaces between III-arsenides (GaAs, AlGaAs) and III-phosphides (GaInP, AlInP) leads to undesired potential barriers for majority carriers at the p–p isotype heterojunction interfaces that results in significant losses. A set of the experimental techniques was successfully applied for the interface characterization. The presence of the potential barrier and its effective height at the mentioned above interfaces were experimentally determined. Another phenomenon at the III-V/IV heterojunction interfaces is described on example of GaInP/Ge interface. An unexpected “parasitic” potential barrier was observed at this interface, which is related to inter-diffusion process.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. King, R.R., Law, D.C., Edmondson, K.M., et al.: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007)

    Article  Google Scholar 

  2. Olson, J.M., Friedman, D.J., Kurtz, S.: High-Efficiency III-V Multijunction Solar Cells Handbook of Photovoltaic Science and Engineering. In: Luque, A., Hegedus, S. (eds.) John Wiley & Sons, Ltd, Chichester (2003)

    Google Scholar 

  3. Sharma, B.L., Purohit, R.K.: Semiconductor Heterojunctions. Pergamon, Elsevier Science & Technology (1974)

    Google Scholar 

  4. Andreev, V.M.: GaAs and high-efficiency space cells. In: Markvart, T., Castafier, L. (eds.) Practical Handbook of Photovoltaics: Fundamentals and Applications, pp. 433–2003. Elsevier Science, New York (417)

    Google Scholar 

  5. Adachi, S., GaAs, A.S.: AlAs, and AlxGa1 − xAsB: material parameters for use in research and device applications. J. Appl. Phys. 58, R1–R29 (1985)

    Article  CAS  Google Scholar 

  6. Watanabe, M.O., Ohba, Y.: Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique. Appl. Phys. Lett. 50, 906–908 (1987)

    Article  CAS  Google Scholar 

  7. Olson, J.M., Ahrenkiel, R.K., Dunlavy, D.J., et al.: Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces. Appl. Phys. Lett. 55, 1208 (1989)

    Article  CAS  Google Scholar 

  8. Kurtz, S.R., Olson, J.M., Friedman, D.J., et al.: Passivation of interfaces in high-efficiency photovoltaic devices. In: Hasegawa, H., Hong, M., Lu, Z.H., Pearton S.J. (eds.) Proc. of the Compound Semiconductor Surface Passivation and Novel Device Processing Symposium. Mat. Res. Soc. Symp. Proc., vol. 573. pp. 95–106. Warrendale, USA (1999)

    Google Scholar 

  9. Wojtczuk, S.J., Vernon, S.M., Sanfacon M.M.: Comparison of windows for p–on–n InGaP solar cells. Proc. of the 23th IEEE Photovoltaic Specialists Conf. pp. 655–658 (1993)

    Google Scholar 

  10. Gudovskikh, A.S., Kaluzhniy, N.A., Lantratov, V.M., et al.: Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows. Thin Solid Films 516, 6739–6743 (2008)

    Article  CAS  Google Scholar 

  11. Lantratov, V.M., Kaluzhniy, N.A., Mintairov, S.A., Timoshina, N.K., Shvarts, M.Z., Andreev, V.M.: Semiconductors 41, 727 (2007)

    Article  CAS  Google Scholar 

  12. Stangl, R., Kriegel, M., Schmidt, M.: AFORS-HET, Version 2.2, a numerical computer simulation program for simulation of heterojunction solar cells and measurements. Proc. of the IEEE 4th World Conf. on Photovolt. Energy Conv. vol 2, pp. 1350–1353. Hawaii, USA (2006)

    Google Scholar 

  13. Yang, M.J., Yamaguchi, M., Takamoto, T., et al.: Photoluminescence analysis of InGaP top cells for high-efficiency multi-junction solar cells. Sol. Energy Mater. Sol. Cells 45, 331–339 (1997)

    Article  CAS  Google Scholar 

  14. Anderson, R.L.: Germanium-gallium arsenide heterojunction. IBM J. Res. Dev. 4(3), 283 (1960)

    Article  CAS  Google Scholar 

  15. Gudovskikh, A.S., Kalyuzhnyy, N.A., Lantratov, V.M., Mintairov, S.A., Shvarts, M.Z., Andreev, V.M.: Properties of interfaces in GaInP solar cells. Semiconductors 43(10), 1363–1368 (2009)

    Article  CAS  Google Scholar 

  16. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York (1981)

    Google Scholar 

  17. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  CAS  Google Scholar 

  18. Bour, D.P., Shealy, J.R., Wicks, G.W., Schaff, W.J.: Optical properties of AlxIn1 − xP grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 50, 615–617 (1987)

    Article  CAS  Google Scholar 

  19. Jiang, C.-S., Friedman, D.J., Moutinho, H.R., Al-Jassim, M.M.: Profiling the built-in electrical potential in III–V multijunction solar cells. Proc. of the 4th World Conf. on Photovolt. Energy Conv. (WCPEC–4) pp. 853–856. Hawaii, USA (2006)

    Google Scholar 

  20. He, X., Razeghi, M.: J. Appl. Phys. 73, 3284 (1993)

    Article  CAS  Google Scholar 

  21. Dehaese, O., Wallart, X., Schuler, O., Mollot, F.: X-ray photoemission characterization of interface abruptness and band offset of Ga0.5In0.5P grown on GaAs. J. Appl. Phys. 84, 2127–2132 (1998)

    Article  CAS  Google Scholar 

  22. Liedenbaum, T.H.F., Valster, A., Severens, A.L.G.J., Hooft, G.W.: Determination of the GaInP/AlGaInP band offset C. Appl. Phys. Lett. 57, 2698–2700 (1990)

    Article  CAS  Google Scholar 

  23. Dawson, M.D., Duggan, G.: Exciton localization effects and heterojunction band offset in (Ga, In)P–(Al, Ga, In)P multiple quantum wells. Phys. Rev. B 47, 12598–12604 (1993)

    Article  CAS  Google Scholar 

  24. Dawson, M.D., Najda, S.P., Kean, A.H., et al.: Measurement of the direct energy gap of Al0.5In0.5P: implications for the band discontinuity at Ga1 – xInxP/AlyIn1 – yP. Phys. Rev. B 50, 11190–11191 (1994)

    Article  CAS  Google Scholar 

  25. Ishitani, Y., Minagawa, S., Kita, T., et al.: The optical processes in AlInP/GaInP/AlInP quantum wells. J. Appl. Phys. 80, 4592–4598 (1996)

    Article  CAS  Google Scholar 

  26. Vignaud, D., Mollot, F.: Conduction band offset in the AlxGayIn1 − x − yP/Ga0.52In0.48P system as studied by luminescence spectroscopy. J. Appl. Phys. 93, 384–389 (2003)

    Article  CAS  Google Scholar 

  27. Patel, D., Hafich, M.J., Robinson, G.Y., Menoni, C.S.: Direct determination of the band discontinuities in InxGa1–xP/InyAl1–yP multiple quantum wells. Phys. Rev. B 48, 18031–18036 (1993)

    Article  CAS  Google Scholar 

  28. Lang, D.V., Cohen, J.D., Harbison, J.P.: Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy. Phys. Rev. B 25, 5285–5320 (1982)

    Article  CAS  Google Scholar 

  29. Gudovskikh, A.S., Kleider, J.P., Damon-Lacoste, J., et al.: Interface properties of a-Si:H/c-Si heterojunction solar cells from admittance spectroscopy. Thin Solid Films 511–512, 385–389 (2006)

    Article  Google Scholar 

  30. Gudovskikh, A.S., Kleider, J.P., Chouffot, R., et al.: III-phosphides heterojunction solar cell interface properties from admittance spectroscopy. J. Phys. D: Appl. Phys. 42, 165307 (2009)

    Article  Google Scholar 

  31. Fahrner, W.R., Goesse, R., Scherff, M., et al.: Admittance measurements on a-Si/c-Si heterojunction solar cells. J. Electrochem. Soc. 152, G819–G823 (2005)

    Article  Google Scholar 

  32. Kuo, H.C., Kuo, J.M., Wang, Y.C., et al.: Determination of the band offset of GalnP–GaAs and AllnP–GaAs quantum wells by optical spectroscopy. J. Electron. Mater. 26, 944–948 (1997)

    Article  CAS  Google Scholar 

  33. Gudovskikh, A.S., Kleider, J.P., Kalyuzhnyy, N.A., et al.: Band structure at heterojunction interfaces of GaInP solar cells. Sol. Energy Mater. Sol. Cells 94, 1953–1958 (2010)

    Article  CAS  Google Scholar 

  34. Gudovskikh, A.S., Zelentsov, K.S., Kalyuzhnyy, N.A., et al.: Interfaces in III-V multijunction solar cells: characterization and modelling. Eur. Mater. Res. Soc. Conf. E-MRS 2011. Nice, France (2011)

    Google Scholar 

  35. Friedman, D.J., Olson, J.M., Ward, S., et al.: Ge concentrator cells for III-V multijunction devices. Proc. of the 28th IEEE Photovolt. Spec. Conf. p. 965. Alaska, USA (2000)

    Google Scholar 

  36. Yamaguchi, M., Takamoto, M., Araki, K.: Super high-efficiency multi-junction and concentrator solar cells. Sol. Energy Mater. Sol. Cells 90, 3068–3077 (2006)

    Article  CAS  Google Scholar 

  37. Van Ruyven, L.J.: Phenomena at heterojunctions. Annu. Rev. Mater. Sci. 2, 501–528 (1972)

    Article  Google Scholar 

  38. Gudovskikh, A.S., Zelentsov, K.S., Kalyuzhnyy, N.A., et al.: Interface properties of GaInP/Ge heterostructure subcells of multijunction solar cells. J. Phys. D: Appl. Phys. 45, 495305 (2012)

    Article  Google Scholar 

  39. Hannay, N.B.: Semiconductors. Reinhold Publishing Corporation, New York (1959)

    Google Scholar 

  40. Zakharov, N.D., Rozhanskij, V.N., Korchazhkina, R.L.: Defects evolving from the decomposition of a solid solution of phosphorus in germanium. Fiz. Tverd. Tela 16, 1444–1450 (1974) (in Russian)

    CAS  Google Scholar 

  41. Fistul, V.I., Yakovenko, A.G., Gvelesiani, A.A., Tsygankov, V.N., Korchazhkina, R.L.: Solubility and segregation of electrically active phosphorus in Ge. Izv. Akad. Nauk SSSR Neorg. Mater. 11, 539–541 (1975)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Gudovskikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gudovskikh, A.S., Kalyuzhnyy, N.A., Mintairov, S.A., Lantratov, V.M. (2014). Interfaces in III–V High Efficiency Solar Cells. In: Wang, X., Wang, Z. (eds) High-Efficiency Solar Cells. Springer Series in Materials Science, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-01988-8_18

Download citation

Publish with us

Policies and ethics