DNA Sticky End Design and Assignment for Robust Algorithmic Self-assembly

  • Constantine G. Evans
  • Erik Winfree
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8141)


A major challenge in practical DNA tile self-assembly is the minimization of errors. Using the kinetic Tile Assembly Model, a theoretical model of self-assembly, it has been shown that errors can be reduced through abstract tile set design. In this paper, we instead investigate the effects of “sticky end” sequence choices in systems using the kinetic model along with the nearest-neighbor model of DNA interactions. We show that both the sticky end sequences present in a system and their positions in the system can significantly affect error rates, and propose algorithms for sequence design and assignment.


Tile System Tile Type Tile Assembly Model Tile Concentration Correct Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    The Xgrow simulator,
  3. 3.
    Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. USA 106, 6054–6059 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Chen, H.-L., Kao, M.-Y.: Optimizing tile concentrations to minimize errors and time for DNA tile self-assembly systems. In: Sakakibara, Y., Mi, Y. (eds.) DNA16. LNCS, vol. 6518, pp. 13–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Lett. 7, 2913–2919 (2007)CrossRefGoogle Scholar
  7. 7.
    Deaton, R., Chen, J., Bi, H., Rose, J.: A software tool for generating non-crosshybridizing libraries of DNA oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA8. LNCS, vol. 2568, pp. 252–261. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78–88 (2012)CrossRefGoogle Scholar
  9. 9.
    Evans, C.G., Hariadi, R.F., Winfree, E.: Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level. J. Am. Chem. Soc. 134, 10485–10492 (2012)CrossRefGoogle Scholar
  10. 10.
    Fujibayashi, K., Murata, S.: Precise simulation model for DNA tile self-assembly. IEEE Trans. Nanotechnol. 8, 361–368 (2009)CrossRefGoogle Scholar
  11. 11.
    Fujibayashi, K., Hariadi, R.F., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern. Nano Lett. 8, 1791–1797 (2008)CrossRefGoogle Scholar
  12. 12.
    Jang, B., Kim, Y., Lombardi, F.: Error tolerance of DNA self-assembly by monomer concentration control. In: 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 89–97. IEEE (2006)Google Scholar
  13. 13.
    Kick, A., Bönsch, M., Mertig, M.: EGNAS: An exhaustive DNA sequence design algorithm. BMC Bioinformatics 13, 138 (2012)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Liu, M., Wang, L., Nangreave, J., Yan, H., Liu, Y.: Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 132, 13545–13552 (2013)CrossRefGoogle Scholar
  15. 15.
    Nangreave, J., Yan, H., Liu, Y.: Studies of thermal stability of multivalent DNA hybridization in a nanostructured system. Biophys. J. 97, 563–571 (2009)CrossRefGoogle Scholar
  16. 16.
    Park, S.H., Yin, P., Liu, Y., Reif, J.H., LaBean, T.H., Yan, H.: Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5, 729–733 (2013)CrossRefGoogle Scholar
  17. 17.
    Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Phan, V., Garzon, M.H.: On codeword design in metric DNA spaces. Nat. Comput. 8, 571–588 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pinheiro, A.V., Nangreave, J., Jiang, S., Yan, H., Liu, Y.: Steric crowding and the kinetics of DNA hybridization within a DNA nanostructure system. ACS Nano 6, 5521–5530 (2013)CrossRefGoogle Scholar
  20. 20.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004)Google Scholar
  22. 22.
    SantaLucia, J., Hicks, D.: The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)CrossRefGoogle Scholar
  23. 23.
    Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. USA 109, 6405–6410 (2012)CrossRefGoogle Scholar
  24. 24.
    Tanaka, F.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Res. 33, 903–911 (2005)CrossRefGoogle Scholar
  25. 25.
    Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33, 4951–4964 (2005)CrossRefGoogle Scholar
  26. 26.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012)CrossRefGoogle Scholar
  27. 27.
    Winfree, E.: On the Computational Power of DNA Annealing and Ligation. In: DNA Computers. DIMACS Series in Discrete Mathematics and Computer Science, pp. 199–221. AMS (1996)Google Scholar
  28. 28.
    Winfree, E.: Simulations of computing by self-assembly. Tech. Rep. CaltechCSTR:1998.22, Pasadena, CA (1998)Google Scholar
  29. 29.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA9. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Constantine G. Evans
    • 1
  • Erik Winfree
    • 2
  1. 1.PhysicsCalifornia Institute of TechnologyUSA
  2. 2.Computer ScienceCalifornia Institute of TechnologyUSA

Personalised recommendations