Using the Semantics of Texts for Information Retrieval: A Concept- and Domain Relation-Based Approach

  • Davide Buscaldi
  • Marie-Noëlle Bessagnet
  • Albert Royer
  • Christian Sallaberry
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 241)

Abstract

Our hypothesis is that assessing the relevance of a document with respect to a query is equivalent to assessing the conceptual similarity between the terms of the query and those of the document. In this article, we therefore propose a method of calculating conceptual similarity. Our information retrieval strategy is based on exploring an ontology and domain relations between concepts marked by verbal forms. Our approach overall is implemented by a prototype and the results obtained are evaluated. We thus show that a semantic IR system based on concepts improves recall with respect to a classic IR system and that a semantic IR system based on concepts and domain relations improves precision with respect to IR based on concepts alone.

Keywords

information retrieval ontology similarity measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aussenac-Gilles, N., Kamel, M., Buscaldi, D., Comparot, C.: Construction dontologie partir d’une collection de pages web structures. In: Troncy, R. (ed.) Actes des Journées Francophones d’ingénierie des connaissances, IC 2013, Lille, France, pp. 1–16. AFIA (to appear, July 2013)Google Scholar
  2. 2.
    Bannour, I., Zargayouna, H.: Une plate-forme open-source de recherche d’information sémantique. In: CORIA 2012, Bordeaux, France, pp. 167–178 (2012)Google Scholar
  3. 3.
    Cimiano, P., Buitelaar, P., McCrae, J., Sintek, M.: Lexinfo: A declarative model for the lexicon-ontology interface. Web Semant. 9(1), 29–51 (2011)CrossRefGoogle Scholar
  4. 4.
    Dudognon, D., Hubert, G., Ralalason, B.J.V.: ProxiGénéa: Une mesure de similarité conceptuelle. In: Colloque Veille Stratégique Scientifique et Technologique (VSST), October 2010, Université Paul Sabatier - Toulouse (2010) (support électronique), http://www.ups-tlse.fr
  5. 5.
    Dumais, S.T.: Latent semantic analysis. Annual Review of Information Science and Technology 38(1), 188–230 (2004)CrossRefGoogle Scholar
  6. 6.
    Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-based information retrieval using explicit semantic analysis. ACM Trans. Inf. Syst. 29(2), 8:1–8:34 (2011)Google Scholar
  7. 7.
    Fernández, M., Cantador, I., Lopez, V., Vallet, D., Castells, P., Motta, E.: Semantically enhanced information retrieval: An ontology-based approach. J. Web Sem. 9(4), 434–452 (2011)CrossRefGoogle Scholar
  8. 8.
    Gabrilovich, E.: Feature generation for textual information retrieval using world knowledge. SIGIR Forum. 41(2), 123–123 (2007)CrossRefGoogle Scholar
  9. 9.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. of the Int’l. Conf. on Research in Computational Linguistics, pp. 19–33 (1997)Google Scholar
  10. 10.
    McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim - a semantic platform for information extraction and retrieval. Natural Language Engineering 10(3-4), 375–392 (2004)CrossRefGoogle Scholar
  12. 12.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. (JAIR) 11, 95–130 (1999)Google Scholar
  13. 13.
    Roche, C., Calberg-Challot, M., Damas, L., Rouard, P.: Ontoterminology: A new paradigm for terminology. In: International Conference on Knowledge Engineering and Ontology Development, Madeira, Portugal, pp. 321–326 (2009)Google Scholar
  14. 14.
    Sanderson, M., Paramita, M.L., Clough, P., Kanoulas, E.: Do user preferences and evaluation measures line up? In: SIGIR, pp. 555–562 (2010)Google Scholar
  15. 15.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, ACL 1994, pp. 133–138. Association for Computational Linguistics, Stroudsburg (1994)CrossRefGoogle Scholar
  16. 16.
    Zhong, M., Huang, X.: Concept-based biomedical text retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2006, pp. 723–724. ACM, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Davide Buscaldi
    • 2
  • Marie-Noëlle Bessagnet
    • 1
  • Albert Royer
    • 1
  • Christian Sallaberry
    • 1
  1. 1.LIUPPA, Université de Pau et des des Pays de l’AdourPauFrance
  2. 2.LIPN, Université Paris XIIIVilletaneuseFrance

Personalised recommendations