Solving Linear Systems of Equations from BEM Codes

  • Raquel González
  • Lidia Sánchez
  • José Vallepuga
  • Javier Alfonso
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)


In this paper, we compare different methods to solve systems of linear equations in order to determine which one allows us to reduce as much as possible the execution time. We consider contact problems that are solved by applying the Boundary Element Method that involves the resolution of different systems of linear equations. Depending on the kind of problem, thermal and elastic systems of equations have to be solved. The number of equations depends on the number of elements in which solids are discretized. This means that the more realistic are the solids defined, the more number of elements are considered. For this reason, it is really interesting to determine the most efficient method. We compare the Gauss Elimination method with and without pivoting, the Gauss-Jordan method and the LU Factorization method for several elastic and thermoelastic problems. LU Factorization provides an average reduction of a 37% in the execution times, and up to a 41% for some particular problems.


Systems of linear equations BEM application performance execution time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sitio web de ABAQUS,
  2. 2.
    Sitio web de ADINA,
  3. 3.
    Sitio web de ANSYS,
  4. 4.
    Sitio web de BEASY,
  5. 5.
  6. 6.
    Sitio web de Concept Analyst,
  7. 7.
  8. 8.
    Sitio web de ParaFEM,
  9. 9.
    Andersson, T., Fredriksson, B., Persson, B.G.A.: The boundary element method applied to two-dimensional contact problems. In: New Developments in Boundary Element Methods. Proceedings of the Second International Seminar on Recent Advances in Boundary Element Methods, Southampton, England, pp. 247–263 (1980)Google Scholar
  10. 10.
    Ataseven, Y., Akalin-Acar, Z., Acar, C.E., Gençer, N.G.: Parallel implementation of the accelerated bem approach for emsi of the human brain. Medical & Biological Engineering & Computing 46, 671–679 (2008)CrossRefGoogle Scholar
  11. 11.
    Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Techniques. Springer, Berlin (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Chung, T.J.: Finite element analysis in fluid dynamics. McGraw Hill International Book Co. (1978)Google Scholar
  13. 13.
    Cunha, M.T.F., Telles, J.C.F., Coutinho, A.L.G.A.: A portable parallel implementation of a boundary element elastostatic code for shared and distributed memory systems. Advances in Engineering Software 35, 453–460 (2004)CrossRefGoogle Scholar
  14. 14.
    Davies, A.: Parallel implementations of the boundary element method. Computers & Mathematics with Applications 31, 33–40 (1996)MATHCrossRefGoogle Scholar
  15. 15.
    Espinosa, J.V., Mediavilla, A.F.: Boundary element method applied to three dimensional thermoelastic contact. Engineering Analysis with Boundary Elements 36, 928–933 (2012)CrossRefGoogle Scholar
  16. 16.
    Garrido, J.A., Foces, A., París, F.: Three dimensional frictional conforming contact using BEM. In: Springer-Verlag (ed.) Advances in Boundary Elements XIII, pp. 663–676. Computational Mechanics Publications (1991)Google Scholar
  17. 17.
    Geng, P., Oden, J.T., van de Geijn, R.A.: Massively parallel computation for acoustical scattering problems using boundary element methods. Journal of Sound and Vibration 191, 145–165 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Giannopoulos, G., Anifantis, N.: A BEM analysis for thermomechanical closure of interfacial cracks incorporating friction and thermal resistance. Computer Methods in Applied Mechanics and Engineering 196, 1018–1029 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Gueye, I.: Résolution de grands systèmes linéaires issus de la méthode des éléments finis sur des calculateurs massivement parallèles. Ph.D. thesis, École Nationale Supérieure des Mines de Paris (2009)Google Scholar
  20. 20.
    Jin, J.M.: The finite element method in electromagnetics. Wiley-IEEE Press (2002)Google Scholar
  21. 21.
    Keppas, L., Giannopoulos, G., Anifantis, N.: A BEM formulation to treat transient coupled thermoelastic contact problems incorporating thermal resistance. Computer Modeling in Engineering and Sciences 25, 181–196 (2008)Google Scholar
  22. 22.
    Li, J., Huang, Y., Yang, W.: Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks. Journal of Computational Physics 231, 2880–2891 (2012)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Li, S., Huang, Q.: A new fast multipole boundary element method for two dimensional acoustic problems. Computer Methods Appl. Mech. Engng. 200(9-12), 1333–1340 (2011)MATHCrossRefGoogle Scholar
  24. 24.
    Pantuso, D., Bathe, K.J., Bouzinov, P.A.: A finite element procedure for the analisis of termo-mechanical solids in contact. Computers and Structures 75(6), 551–573 (2000)CrossRefGoogle Scholar
  25. 25.
    Rajalakshmi, K.: Parallel algorithm for solving large system of simultaneous linear equations. International Journal of Computer Science and Network Security 9(7), 276–279 (2009)Google Scholar
  26. 26.
    Vallepuga, J.: Análisis del problema de contacto termoelástico tridimensional sin fricción mediante el método de los elementos de contorno, aplicación en micro-electrónica. Ph.D. thesis, Universidad de Valladolid (2010)Google Scholar
  27. 27.
    Wriggers, P.: Finite element algorithms for contact problems. Archives of Computational Methods in Engineering 2, 1–49 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raquel González
    • 1
  • Lidia Sánchez
    • 1
  • José Vallepuga
    • 2
  • Javier Alfonso
    • 1
  1. 1.Department of Mechanical, Computing and Aerospace EngineeringsUniversity of LeónLeónSpain
  2. 2.Department of Mining, Topography and Structural TechnologyUniversity of LeónLeónSpain

Personalised recommendations