Microcontroller Implementation of a Multi Objective Genetic Algorithm for Real-Time Intelligent Control

  • Martin Dendaluce
  • Juan José Valera
  • Vicente Gómez-Garay
  • Eloy Irigoyen
  • Ekaitz Larzabal
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

This paper presents an approach to merge three elements that are usually not thought to be combined in one application: evolutionary computing running on reasonably priced microcontrollers (μC) for real-time fast control systems. A Multi Objective Genetic Algorithm (MOGA) is implemented on a 180MHz μC.A fourth element, a Neural Network (NN) for supporting the evaluation function by predicting the response of the controlled system, is also implemented. Computational performance and the influence of a variety of factors are discussed. The results open a whole new spectrum of applications with great potential to benefit from multivariable and multiobjective intelligent control methods in which the hybridization of different soft-computing techniques could be present. The main contribution of this paper is to prove that advanced soft-computing techniques are a feasible solution to be implemented on reasonably priced μC -based embedded platforms.

Keywords

Soft-Computing Intelligent Control Multi Objective Genetic Algorithm NSGA-II Artificial Neural Network Microcontroller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudas, I.J., Fodor, J.: Intelligent Systems. International Journal of Computers, Communications and Control 3(Spl. Iss.), 132–138 (2008)Google Scholar
  2. 2.
    Zadeh, L.A.: Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM 37(3), 77–84 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Del Campo, et al.: Efficient Hardware/Software Implementation of an Adaptive Neuro-Fuzzy System. IEEE Transactions on Fuzzy Systems 16(3), 761–778 (2008)CrossRefGoogle Scholar
  4. 4.
    Velagic, et al.: Microcontroller Based Fuzzy-PI Approach Employing Control Surface Discretization. In: 2012 20th Mediterranean Conference on Control Automation, MED, Piscataway, NJ, USA, pp. 638–645 (2012)Google Scholar
  5. 5.
    Jung, S., Su Kim, S.: Hardware Implementation of a Real-Time Neural Network Controller With a DSP and an FPGA for Nonlinear Systems. IEEE Transactions on Industrial Electronics 54(1), 265–271 (2007)CrossRefGoogle Scholar
  6. 6.
    Ravi, S., Sudha, M., Balakrishnan, P.A.: Design and Development of a Microcontroller Based Neuro Fuzzy Temperature Controller. In: 2012 International Conference on Informatics, Electronics &Vision (ICIEV), Piscataway, NJ, USA, pp. 103–107 (2012)Google Scholar
  7. 7.
    Yousefpoor, et al.: THD Minimization Applied Directly on the Line-to-Line Voltage of Multilevel Inverters. IEEE Transactionson Industrial Electronics 59, 373–380 (2012)CrossRefGoogle Scholar
  8. 8.
    Fleming, P., Purshouse, R.: Evolutionary Algorithms in Control Systems Engineering: a Survey. Control Engineering Practice 10(11), 1223–1241 (2002)CrossRefGoogle Scholar
  9. 9.
    Mamdoohi, et al.: Realization of Microcontroller-Based Polarization Control System with Genetic Algorithm. In: 2009 IEEE 9th Malaysia International Conference on Communications (MICC), Piscataway, NJ, USA, pp. 774–779 (2009)Google Scholar
  10. 10.
    Krishnan, et al.: Parallel Distributed Genetic Algorithm Development Based on Microcontrollers Framework. In: First International Conference on Distributed Framework and Applications, DFmA 2008, Piscataway, NJ, USA, pp. 35–40 (2008)Google Scholar
  11. 11.
    Mininno, E., et al.: Real-Valued Compact Genetic Algorithms for Embedded Microcontroller Optimization. IEEE Transaction on Evolutionary Computing 12, 203–219 (2008)CrossRefGoogle Scholar
  12. 12.
    Cao, et al.: DSP Implementation of the Particle Swarm and Genetic Algorithms for Real-Time Design of Thinned Array Antennas. IEEE Antennas and Wireless Propagation Letters 11, 1170–1173 (2012)CrossRefGoogle Scholar
  13. 13.
    Kwak, M., Shin, T.S.: Real-Time Automatic Tuning of Vibration Controllers for Smart Structures by Genetic Algorithm. In: Proc. of SPIE, USA, vol. 3667, pp. 679–690 (1999)Google Scholar
  14. 14.
    Goldberg, D., Segrest, P.: Finite Markov Chain Analysis of Genetic Algorithms. In: Proceedings of the Second International Conference on Genetic Algorithms and their Application, pp. 1–8. L. Erlbaum Associates Inc., Hillsdale (1987)Google Scholar
  15. 15.
    Valera Garcia, J.J., et al.: Intelligent Multi-Objective Nonlinear Model Predictive Control (iMO-NMPC): Towards the ’On-line’ Optimization of Highly Complex Control Problems. Expert Systems with Applications 39(7), 6527–6540 (2012)CrossRefGoogle Scholar
  16. 16.
    Holland, J.H.: Adaptation in Natural and Artificial Systems:. Univ. Michigan Press (1975)Google Scholar
  17. 17.
    Goldberg, D., Holland, J.: Genetic Algorithms and Machine Learning. Machine Learning 3(2-3), 95–99 (1988)CrossRefGoogle Scholar
  18. 18.
    Coello Coello, C.A.: Evolutionary Multi-Objective Optimization: a Historical View of the Field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Konak, et al.: ulti-Objective Optimization using Genetic Algorithms: A tutorial. Reliability Engineering & System Safety 91(9), 992–1007 (2006)CrossRefGoogle Scholar
  20. 20.
    Deb, et al.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Martin, P.: A hardware implementation of a genetic programming system using FPGAs and Handel-C. Genetic Programming and Evolvable Machines 2(4), 317–343 (2001)MATHCrossRefGoogle Scholar
  22. 22.
    Toscano Pulido, G., Coello Coello, C.A.: The Micro Denetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Cabrera, J.C.F., Coello Coello, C.A.: Micro-MOPSO: A Multi-objective Particle Swarm Optimizer that uses a very small Population Size. In: Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L. (eds.) Multi-Objective Swarm Intelligent Systems. SCI, vol. 261, pp. 83–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Li, Q., He, J.: A sophisticated architecture for evolutionary multiobjective optimization utilizing high performance dsp. In: Kang, L., Liu, Y., Zeng, S. (eds.) ICES 2007. LNCS, vol. 4684, pp. 415–425. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Larzabal, E., Cubillos, J.A., Larrea, M., Irigoyen, E., Valera, J.J.: Soft computing Testing in Real Industrial Platforms for Process Intelligent Control. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 221–230. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Dendaluce
    • 2
  • Juan José Valera
    • 2
  • Vicente Gómez-Garay
    • 2
  • Eloy Irigoyen
    • 1
    • 2
  • Ekaitz Larzabal
    • 2
  1. 1.Computational Intelligence Group, Department of Systems Engineering and Automatic ControlUniversity of the Basque Country (UPV/EHU), ETSIBilbaoSpain
  2. 2.Intelligent Control Research Group, Department of Systems Engineering and Automatic ControlUniversity of the Basque Country (UPV/EHU), ETSIBilbaoSpain

Personalised recommendations