Advertisement

A Neural Network Model for Energy Consumption Prediction of CIESOL Bioclimatic Building

  • Rafael Mena Yedra
  • Francisco Rodríguez Díaz
  • María del Mar Castilla Nieto
  • Manuel R. Arahal
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

Energy efficiency in buildings is a topic that is being widely studied. In order to achieve energy efficiency it is necessary to perform both, a proper management of the electric demand, and an optimal exploitation of renewable sources, using for that appropriate control strategies. The main objective of this paper is to develop a short term predictive model, based on neural networks, of the electricity demand for the CIESOL research center. The performed experiments, using different techniques for weather forecast, show a quick prediction with acceptable final results for real data, obtaining a maximum root mean squared error of 5 % in validation data, with a short-term prediction horizon of 60 minutes.

Keywords

Electric demand prediction Predictive model Neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    United Nations Department of Economic & Social Affairs, W.E.C.: World Energy Assessment - Energy and the Challenge of Sustainability. United Nations Development Programme (2000)Google Scholar
  2. 2.
    Zhao, H., Magoulès, F.: A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews 16(6), 3586–3592 (2012)CrossRefGoogle Scholar
  3. 3.
    Suganthi, L., Samuel, A.A.: Energy models for demand forecasting - a review. Renewable and Sustainable Energy Reviews (2011)Google Scholar
  4. 4.
    Castilla, M., Álvarez, J.D., Ortega, M.G., Arahal, M.R.: Neural network and polynomial approximated thermal comfort models for hvac systems. Building and Environment (2012)Google Scholar
  5. 5.
    Bosqued, A., Palero, S., San Juan, C., Soutullo, S., Enríquez, R., Ferrer, J.A., Martí, J., Heras, J., Guzmán, J.D., Jiménez, M.J., Bosqued, R., Heras, M.R.: ARFRISOL, bioclimatic architecture and solar cooling project. In: Proceedings of PLEA 2006 Passive and Low Energy Architecture, Geneva, Switzerland (2006)Google Scholar
  6. 6.
    More, J.: The Levenberg-Marquardt algorithm: implementation and theory. Numerical Analysis, 105–116 (1978)Google Scholar
  7. 7.
    Lin, T., Horne, B.G., Giles, C.L.: How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies. Neural Networks 11(5), 861–868 (1998)CrossRefGoogle Scholar
  8. 8.
    Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks 7(6), 1329–1338 (1996)CrossRefGoogle Scholar
  9. 9.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    Kantz, H., Schreiber, T.: Nonlinear time series analysis, vol. 7. Cambridge University Press (2004)Google Scholar
  11. 11.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review 45(6), 3403 (1992)CrossRefGoogle Scholar
  12. 12.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)CrossRefGoogle Scholar
  13. 13.
    Pawlowski, A., Guzmán, J., Rodríguez, F., Berenguel, M., Sánchez, J.: Application of time-series methods to disturbance estimation in predictive control problems. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 409–414. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafael Mena Yedra
    • 1
  • Francisco Rodríguez Díaz
    • 1
  • María del Mar Castilla Nieto
    • 1
  • Manuel R. Arahal
    • 2
  1. 1.ceiA3 CIESOL, Joint Center University of Almería - CIEMATUniversity of Almería Agrifood Campus of International ExcellenceAlmeríaSpain
  2. 2.Dpto. Ingeniería de Sistemas y Automática, Escuela Técnica Superior de IngenieríaUniversity of SevillaSevillaSpain

Personalised recommendations