The Isomorphism of Polynomials Problem Applied to Multivariate Quadratic Cryptography

  • Marta Conde Pena
  • Raúl Durán Díaz
  • Luis Hernández Encinas
  • Jaime Muñoz Masqué
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)


The threat quantum computing poses to traditional cryptosystems (such as RSA, elliptic-curve cryptosystems) has brought about the appearance of new systems resistant to it: among them, multivariate quadratic public-key ones. The security of the latter kind of cryptosystems is related to the isomorphism of polynomials (IP) problem. In this work, we study some aspects of the equivalence relation the IP problem induces over the set of quadratic polynomial maps and the determination of its equivalence classes. We contribute two results. First, we prove that when determining these classes, it suffices to consider the affine transformation on the left of the central vector of polynomials to be linear. Second, for a particular case, we determine an explicit system of invariants from which systems of equations whose solutions are the elements of an equivalence class can be derived.


Equivalence classes Equivalent keys Isomorphism of polynomials problem Multivariate cryptography System of invariants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Merkle, R.C.: Secrecy, authentication, and public key systems. PhD thesis, Stanford University (1979)Google Scholar
  3. 3.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Technical Report 42-44, Jet Propulsion Laboratory (1978)Google Scholar
  4. 4.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems. Advances in Information Security, vol. 25. Springer (2006)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completness. W. H. Freeman & Co. (1990)Google Scholar
  7. 7.
    Wolf, C.: Multivariate Quadratic Polynomials in Public Key Criptography. PhD thesis, Katholieke Universiteit Leuven (November 2005)Google Scholar
  8. 8.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocryptp’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Feldmann, A.T.: A Survey of Attacks on Multivariate Cryptosystems. PhD thesis, University of Waterloo (2005)Google Scholar
  10. 10.
    Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the ‘isomorphism of polynomials’ problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  12. 12.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems. Journal of Mathematical Cryptology 4(4), 375–415 (2005)MathSciNetGoogle Scholar
  17. 17.
    Wolf, C., Preneel, B.: Large superfluous keys in \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic asymmetric systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Wolf, C., Preneel, B.: Equivalent keys in HFE, C*, and variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Faugère, J.-C., Perret, L.: Polynomial equivalence problems: Algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lin, D., Faugère, J.-C., Perret, L., Wang, T.: On enumeration of polynomial equivalence classes and their application to MPKC. Finite Fields and Their Applications 18(2), 283–302 (2012)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Mingjie, L., Lidong, H., Xiaoyun, W.: On the equivalent keys in multivariate cryptosystems. Tsinghua Science & Technology 16, 225–232 (2011)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marta Conde Pena
    • 1
  • Raúl Durán Díaz
    • 2
  • Luis Hernández Encinas
    • 1
  • Jaime Muñoz Masqué
    • 1
  1. 1.Instituto de Seguridad de la InformaciónCSICMadridSpain
  2. 2.Universidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations