Advertisement

Identification of Degeneracies in a Class of Cryptographic Sequences

  • Amparo Fúster-Sabater
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

In this work, the parameter linear complexity for a class of filtered sequences has been considered and analyzed. The study is based on the handling of bit-strings that permit identify potential degeneracies or linear complexity reductions in the sequences generated from this kind of nonlinear filters. Numerical expressions to determine the linear complexity of such sequences have been developed as well as design rules to generate sequences that preserve maximal linear complexity are also provided. The work complete the analysis of the linear complexity for these sequence generators found in the literature.

Keywords

filter design pseudorandom sequence LFSR cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bluetooth, Specifications of the Bluetooth system, Version 1.1, http://www.bluetooth.com/
  2. 2.
    eSTREAM, the ECRYPT Stream Cipher Project, Call for Primitives, http://www.ecrypt.eu.org/stream/
  3. 3.
    Fúster-Sabater, A., Caballero-Gil, P., Delgado-Mohatar, O.: Deterministic Computation of Pseudorandomness in Sequences of Cryptographic Application. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part I. LNCS, vol. 5544, pp. 621–630. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)Google Scholar
  5. 5.
    Groth, E.J.: Generation of binary sequences with controllable complexity. IEEE Trans. Informat. Theory 17(3), 288–296 (1971)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Key, E.L.: An Analysis of the Structure and Complexity of Nonlinear Binary Sequence Generators. IEEE Trans. Informat. Theory 22(6), 732–736 (1976)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kolokotronis, N., Kalouptsidis, N.: On the linear complexity of nonlinearly filtered PN-sequences. IEEE Trans. Informat. Theory 49(11), 3047–3059 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Limniotis, K., Kolokotronis, N., Kalouptsidis, N.: On the Linear Complexity of Sequences Obtained by State Space Generators. IEEE Trans. Informat. Theory 54(4), 1786–1793 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  10. 10.
    Massey, J.L.: Shift-Register Synthesis and BCH Decoding. IEEE Trans. Informat. Theory 15(1), 122–127 (1969)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Massey, J.L., Serconek, S.: A Fourier transform approach to the linear complexity of nonlinearly filtered sequences. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 332–340. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, New York (1997)MATHGoogle Scholar
  13. 13.
    Nagaraj, N.: One-Time Pad as a nonlinear dynamical system. Commun. Nonlinear Sci. Numer. Simulat. 17, 4029–4036 (2012)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Heildeberg (2010)MATHCrossRefGoogle Scholar
  15. 15.
    Paul, G., Maitra, S.: RC4 Stream Cipher and Its Variants. Discrete Mathematics and Its Applications. CRC Press, Taylor & Francis Group, Boca Raton (2012)Google Scholar
  16. 16.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, New York (1986)MATHCrossRefGoogle Scholar
  17. 17.
    Yet Another SSL (YASSL), http://www.yassl.com

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Information Security InstituteC.S.I.C.MadridSpain

Personalised recommendations