Advertisement

Using Identity-Based Cryptography in Mobile Applications

  • V. Mora-Afonso
  • P. Caballero-Gil
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

This work includes a review of two cases study of mobile applications that use Identity-Based Cryptography (IBC) to protect communications. It also describes a proposal of a new mobile application that combines the use of IBC for Wi-Fi or Bluetooth communication between smartphones, with the promising Near Field Communication (NFC) technology for secure authentication. The proposed scheme involves NFC pairing to establish as public key a piece of information linked to the device, such as the phone number, so that this information is then used in an IBC scheme for peer-to-peer communication. This is a work in progress, so the implementation of a prototype based on smartphones is still being improved.

Keywords

Identity-Based Cryptography Mobile Application Near Field Communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anson, A.: Smartphone Usage Statistics (2012), ansonalex.com/infographics/smartphone-usage-statistics-2012-infographic
  2. 2.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: ACM SAC (2002)Google Scholar
  4. 4.
    Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute based encryption. In: IEEE Symposium on S&P (2007)Google Scholar
  11. 11.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006)Google Scholar
  12. 12.
    Chang, K., Zhang, X., Wang, G., Shin, K.G.: TGIS: Booting Trust for Secure Information Sharing in Dynamic Group Collaborations. In: IEEE PASSAT, pp. 1020–1025 (2011)Google Scholar
  13. 13.
    Jahid, S., Nilizadeh, S., Mittal, P., Borisov, N., Kapadia, A.: DECENT: A decentralized architecture for enforcing privacy in online social networks. In: IEEE PerCom, pp. 326–332 (2012)Google Scholar
  14. 14.
    Feldman, A.J., Blankstein, A., Freedman, M.J., Felten, E.W.: Social Networking with Frientegrity: Privacy and Integrity with an Untrusted Provider. USENIX Security, 647–662 (2012)Google Scholar
  15. 15.
    Rahman, M.S., Huang, T.-K., Madhyastha, H.V., Faloutsos, M.: Efficient and Scalable Software Detection in Online Social Networks. USENIX Security, 663–678 (2012)Google Scholar
  16. 16.
    Wu, Y., Zhao, Z., Wen, X.: Transparently Secure Smartphone-based Social Networking. In: IEEE WCNC (2013)Google Scholar
  17. 17.
    Tencent: WeChat, http://www.wechat.com
  18. 18.
    The Pairing Based Cryptography library, crypto.stanford.edu/pbc
  19. 19.
    Barnickel, J., Wang, J., Meyer, U.: Implementing an Attack on Bluetooth 2.1+ Secure Simple Pairing in Passkey Entry Mode. In: IEEE TrustCom, pp. 17–24 (2012)Google Scholar
  20. 20.
    Lu, Y., Vaudenay, S.: Cryptanalysis of Bluetooth Keystream Generator Two-Level E0. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 483–499. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Zhang, L., Wu, Q., Qin, B., Domingo-Ferrer, J.: Provably secure one-round identity-based authenticated asymmetric group key agreement protocol. Information Sciences 181(19), 4318–4329 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Guo, H., Li, Z., Mu, Y., Zhang, X.: Provably secure identity based authenticated key agreement protocols with malicious private key generators. Information Sciences 181(3), 628–647 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Statistics, O.R. and ComputingUniversity of La LagunaLa LagunaSpain

Personalised recommendations