Advertisement

Provable Secure Constant-Round Group Key Agreement Protocol Based on Secret Sharing

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

Group Key Agreement (GKA) allows multiple users to collaboratively compute a common secret key. Motivated by the very few existing GKA protocols based on secret sharing with formal security proofs, we propose a new method to build such protocols. We base our construction on secret n-sharing, an untraditional perspective of secret sharing that brings several advantages. Our proposal achieves better security than the existing work while it maintains a constant number of communication rounds regardless the group size.

Keywords

group key agreement secret sharing provable security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blakley, G.: Safeguarding Cryptographic Keys. In: Proceedings of the 1979 AFIPS National Computer Conference, pp. 313–317 (1979)Google Scholar
  2. 2.
    Bresson, E., Catalano, D.: Constant Round Authenticated Group Key Agreement via Distributed Computation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 115–129. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-Hellman Key Exchange - The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably Authenticated Group Diffie-Hellman Key Exchange. In: Proceedings of the 8th ACM Conference on Computer and Communications Security (CCS 2001), pp. 255–264 (2001)Google Scholar
  6. 6.
    Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions. In: Proceedings of ASIA CSS 2008, pp. 249–260 (2008)Google Scholar
  7. 7.
    Cao, C., Yang, C., Ma, J., Moon, S.J.: Constructing UC Secure and Constant-Round Group Key Exchange Protocols via Secret Sharing. EURASIP J. Wireless Comm. and Networking (2008)Google Scholar
  8. 8.
    Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling Key Compromise Impersonation Attacks on Group Key Exchange Protocols. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Harn, L., Lin, C.: Authenticated Group Key Transfer Protocol based on Secret Sharing. IEEE Trans. Comput. 59(6), 842–846 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hsu, C., Zeng, B., Cheng, Q., Cui, G.: A Novel Group Key Transfer Protocol. Cryptology ePrint Archive, Report 2012/043 (2012)Google Scholar
  11. 11.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On Secret Sharing Systems. IEEE Transactions on Information Theory 29(1), 35–41 (1983)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols. In: Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS 2005), pp. 180–189 (2005)Google Scholar
  13. 13.
    Nam, J., Kim, M., Paik, J., Jeon, W., Lee, B., Won, D.: Cryptanalysis of a Group Key Transfer Protocol based on Secret Sharing. In: Kim, T.-h., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K.-i., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 309–315. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Olimid, R.F.: On the Security of an Authenticated Group Key Transfer Protocol Based on Secret Sharing. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 399–408. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Olimid, R.F.: Cryptanalysis of a Password-based Group Key Exchange Protocol Using Secret Sharing. Appl. Math. Inf. Sci. 7(4), 1585–1590 (2013)CrossRefGoogle Scholar
  16. 16.
    Pieprzyk, J., Li, C.H.: Multiparty Key Agreement Protocols. In: IEEE Proceedings - Computers and Digital Techniques, pp. 229–236 (2000)Google Scholar
  17. 17.
    Sáez, G.: Generation of Key Predistribution Schemes using Secret Sharing Schemes. Discrete Applied Mathematics 128(1), 239–249 (2003)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Sun, Y., Wen, Q., Sun, H., Li, W., Jin, Z., Zhang, H.: An Authenticated Group Key Transfer Protocol based on Secret Sharing. Procedia Engineering 29, 403–408 (2012)CrossRefGoogle Scholar
  20. 20.
    Yuan, W., Hu, L., Li, H., Chu, J.: An Efficient Password-based Group Key Exchange Protocol Using Secret Sharing. Appl. Math. Inf. Sci. 7(1), 145–150 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhao, J., Gu, D., Gorantla, M.C.: Stronger Security Model of Group Key Agreement. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2011), pp. 435–440 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations