Performance of Chaos Driven Differential Evolution on Shifted Benchmark Functions Set

  • Roman Senkerik
  • Michal Pluhacek
  • Ivan Zelinka
  • Zuzana Kominkova Oplatkova
  • Radek Vala
  • Roman Jasek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

This research deals with the extended investigations on the concept of a chaos-driven evolutionary algorithm Differential Evolution (DE). This paper is aimed at the embedding of set of six discrete dissipative chaotic systems in the form of chaos pseudo random number generator for DE. Repeated simulations were performed on the set of two shifted benchmark test functions in higher dimensions. Finally, the obtained results are compared with canonical DE.

Keywords

Differential Evolution Deterministic chaos Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) ISBN 007-709506-5Google Scholar
  2. 2.
    Tasgetiren, M.F., Suganthan, P.N., Pan, Q.K.: An Ensemble of Discrete Differential Evolution Algorithms for Solving the Generalized Traveling Salesman Problem. Applied Mathematics and Computation 215(9), 3356–3368 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Onwubolu, G., Davendra, D. (eds.): Differential Evolution: A handbook for Permutation-based Combinatorial Optimization. Springer, Germany (2009)Google Scholar
  4. 4.
    Das, S., Konar, A., Chakraborty, U.K., Abraham, A.: Differential evolution with a neighborhood based mutation operator: a comparative study. IEEE Transactions on Evolutionary Computations 13(3), 526–553 (2009)CrossRefGoogle Scholar
  5. 5.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computations 13(2), 398–417 (2009)CrossRefGoogle Scholar
  6. 6.
    Zhang, J., Sanderson, A.C.: JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In: Proceedings of IEEE Congress on Evolutionary Computation, Singapore, pp. 2251–2258 (2007)Google Scholar
  7. 7.
    Zhang, Sanderson, A.C.: Self-adaptive multiobjective differential evolution with direction information provided by archived inferior solutions. In: Proceedings of IEEE World Congress on Evolutionary Computation, Hong Kong, pp. 2801–2810 (2008)Google Scholar
  8. 8.
    Liang, W., Zhang, L., Wang, M.: The Chaos Differential Evolution Optimization Algorithm and its Application to Support Vector Regression Machine. Journal of Software 6(7), 1297–1304 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhenyu, G., Bo, C., Min, Y., Binggang, C.: Self-Adaptive Chaos Differential Evolution. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 972–975. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010) ISSN 0898-1221Google Scholar
  11. 11.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Oplatkova, Z.: An Investigation on the Chaos Driven Differential Evolution: An Initial Study. In: Proceedings of 5th International Conference on Bioinspired Optimization Methods and Their Applications, BIOMA 2012, pp. 185–194 (2012) ISBN 978-961-264-043-9Google Scholar
  12. 12.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Oplatkova, Z.: An Investigation on the Differential Evolution Driven by Selected Discrete Chaotic Systems. In: Proceedings of the 18th International Conference on Soft Computing, MENDEL 2012, pp. 157–162 (2012) ISBN 978-80-214-4540-6Google Scholar
  13. 13.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications (article in press, 2013), ISSN 0898-1221, doi:10.1016/j.camwa.2013.01.016Google Scholar
  14. 14.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) ISBN 007-709506-5Google Scholar
  16. 16.
    Price, K., Storn, R.: Differential evolution homepage (2001), http://www.icsi.berkeley.edu/~storn/code.html
  17. 17.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer (2005) ISBN: 3-540-20950-6Google Scholar
  18. 18.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  19. 19.
    ELabbasy, E.M., Agiza, H.N., EL-Metwally, H., Elsadany, A.A.: Bifurcation analysis, chaos and control in the Burgers mapping. International Journal of Nonlinear Science 4(3), 171–185 (2007)MathSciNetGoogle Scholar
  20. 20.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Ivan Zelinka
    • 2
  • Zuzana Kominkova Oplatkova
    • 1
  • Radek Vala
    • 1
  • Roman Jasek
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations