Deterministic Tableau-Decision Procedure via Reductions for Modal Logic K

  • Joanna Golińska-Pilarek
  • E. Muñoz-Velasco
  • Angel Mora
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)


A deterministic tableau decision procedure via reductions, TK, for verification of validity of modal logic K is presented. The system TK is a deterministic tableau decision procedure defined in the original methodology of tableau systems which does not use any additional kind of branching (apart from the required branching for disjunctions) nor any external techniques such as backtracking, backjumping, loop-checking, etc. A nice feature of system TK is its uniqueness; given a formula it generates in a deterministic way only one tableau tree for it.


modal logics tableau methods decision procedures prefixed tableau systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitting, M.: Modal proof theory. In: Patrick Blackburn, J.V.B., Wolter, F. (eds.) Studies in Logic and Practical Reasoning, vol. 3, pp. 85–138. Elsevier (2007)Google Scholar
  2. 2.
    Massacci, F.: Single step tableaux for modal logics. Journal of Automated Reasoning 24(3), 319–364 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34(5-6), 507–544 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Glasgow, J., Macewen, G., Panangaden, P.: A logic for reasoning about security. ACM Trans. Comput. Syst. 10(3), 226–264 (1992)CrossRefGoogle Scholar
  5. 5.
    Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in distributed systems. ACM Trans. Program. Lang. Syst. 15(4), 706–734 (1993)CrossRefGoogle Scholar
  6. 6.
    Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems—A modal logic formulation. Artificial Intelligence 149(1), 31–60 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bai, Y., Khan, K.M.: Ell secure information system using modal logic technique. International Journal of Secure Software Engineering 2(2), 65–76 (2011)CrossRefGoogle Scholar
  8. 8.
    Caleiro, C., Viganò, L., Basin, D.: Relating strand spaces and distributed temporal logic for security protocol analysis. Logic Journal of IGPL 13(6), 637–663 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    De Paz, J.F., Navarro, M., Pinzón, C.I., Julián, V., Tapia, D.I., Bajo, J.: Mathematical model for a temporal-bounded classifier in security environments. Logic Journal of IGPL 20(4), 712–721 (2012)CrossRefGoogle Scholar
  10. 10.
    Amato, F., Casola, V., Mazzocca, N., Romano, S.: A semantic approach for fine-grain access control of e-health documents. Logic Journal of IGPL (2012)Google Scholar
  11. 11.
    Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In: Patrick Blackburn, J.V.B., Wolter, F. (eds.) Studies in Logic and Practical Reasoning, vol. 3, pp. 181–245. Elsevier (2007)Google Scholar
  12. 12.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Springer (1983)Google Scholar
  13. 13.
    Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Springer, Netherlands (1999)CrossRefGoogle Scholar
  14. 14.
    Goré, R., Nguyen, L.A.: Clausal tableaux for multimodal logics of belief. Fundamenta Informaticae 94(1), 21–40 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mints, G.: Gentzen-type systems and resolution rules part i propositional logic. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Nguyen, L.A.: A new space bound for the modal logics K4, KD4 and S4. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 321–331. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Kanger, S.: Provability in logic. PhD thesis, Stockholm (1957)Google Scholar
  18. 18.
    Massacci, F.: Strongly analytic tableaux for normal modal logics. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 723–737. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Golińska-Pilarek, J., Muñoz-Velasco, E., Mora-Bonilla, A.: Relational dual tableau decision procedure for modal logic K. Logic Journal of IGPL 20(4), 747–756 (2012)zbMATHCrossRefGoogle Scholar
  20. 20.
    Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: Logical Tableaux Research Engineering Companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Abate, P., Goré, R.: The tableau workbench. Electronic Notes in Theoretical Computer Science 231, 55–67 (2009)CrossRefGoogle Scholar
  22. 22.
    Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 307–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joanna Golińska-Pilarek
    • 1
  • E. Muñoz-Velasco
    • 2
  • Angel Mora
    • 2
  1. 1.Institute of PhilosophyUniversity of WarsawWarsawPoland
  2. 2.Dept. Matemática Aplicada.Universidad de MálagaMálagaSpain

Personalised recommendations