Advertisement

Optimization of Solar Integration in Combined Cycle Gas Turbines (ISCC)

  • Javier Antoñanzas-Torres
  • Fernando Antoñanzas-Torres
  • Enrique Sodupe-Ortega
  • F. Javier Martínez-de-Pisón
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

The estimation of the optimum number of loops to operate an integrated solar combined cycle gas turbine (ISCC) represents a complex problem and a very time demanding operation, which must be calculated in near-real time and as a result, it is hardly possible to be solved with regular ISCC production models. This problem is addressed evaluating different soft computing techniques, concluding that the BAG-REPT metamodel fits best generating MAE test of 4.19% and RMSE test of 8.75%. This model presents much lower time than regular ISCC production models and might be used as a decision tool for feasibility assessments and also in pre-design stages of new ISCC projects.

Keywords

ISCC Bagging REPT Combined cycle Decission Support System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baghernejad, A., Yaghoubi, M.: Exergy analysis of an integrated solar combined cycle system. Renewable Energy 35, 2157–2164 (2010)CrossRefGoogle Scholar
  2. 2.
    Antonanzas-Torres, F., Sodupe-Ortega, E., Sanz-Garcia, A., Fernandez-Martinez, R., Martinez-de-Pison-Ascacibar, F.J.: Technical feasibility assessment of integrated solar combined cycle power plants in Ciudad Real (Spain) and Las Vegas (USA). In: Proc. 16th International Congress on Project Engineering, Valencia, Spain (2012)Google Scholar
  3. 3.
    NREL, National Renewable Energy Laboratory (2013), http://www.nrel.gov/csp/solarpaces/
  4. 4.
    Sanz-Garcia, A., Antonanzas-Torres, F., Fernandez-Ceniceros, J., Martinez-de-Pison, F.J.: Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings. Ironmaking and Steelmaking (2013), doi:10.1179/1743281213Y.0000000104Google Scholar
  5. 5.
    de Oliveira Penna Tavares, G., Pacheco, M.A.C.: A Genetic algorithm applied to a main sequence stellar model. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS (LNAI), vol. 6678, pp. 32–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Pop, P.C., Matei, O., Sitar, C.P., Chira, C.: A genetic algorithm for solving the generalized vehicle routing problem. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010, Part II. LNCS (LNAI), vol. 6077, pp. 119–126. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Martinez-de-Pison, F.J., Pernia, A.V., Blanco, J., Gonzalez, A., Lostado, R.: Control model for an elastomer extrusion process obtained via a comparative analysis of data mining and artificial intelligence techniques. Polymer-Plastics Technology and Engineering 49, 779–790 (2010)CrossRefGoogle Scholar
  8. 8.
    Martinez-de-Pison, F.J., Pernia, A.V., Gonzalez, A., Lopez-Ochoa, L.M., Ordieres, J.B.: Optimum model for predicting temperature settings on hot dip galvanising line. Ironmaking and Steelmaking 37(3), 187–194 (2010)CrossRefGoogle Scholar
  9. 9.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 16, 716–723 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)CrossRefMATHGoogle Scholar
  11. 11.
    Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: Proc. 9th European Conference on Machine Learning, Prague, Czech Republic, pp. 128–137 (April 1997)Google Scholar
  12. 12.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)MathSciNetMATHGoogle Scholar
  13. 13.
    Stochastic gradient boosting. Stanford University, Standford (1999)Google Scholar
  14. 14.
    Mckay, M., Beckman, R., Conover, W.: A comparison of three method for selecting values of input variables in the analysis of output from a computer code. Tecnometrics 21, 239–245 (1979)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Javier Antoñanzas-Torres
    • 1
  • Fernando Antoñanzas-Torres
    • 1
  • Enrique Sodupe-Ortega
    • 1
  • F. Javier Martínez-de-Pisón
    • 1
  1. 1.EDMANS Research GroupUniversity of La RiojaLogroñoSpain

Personalised recommendations