Multiple Choice Strategy Based PSO Algorithm with Chaotic Decision Making – A Preliminary Study

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)


In this paper, it is proposed the utilization of chaotic pseudo random number generators based on six selected discrete chaotic maps to enhance the performance of newly proposed multiple choice strategy based PSO algorithm. This research represents a continuation of previous successful experiments with the fusion of the PSO algorithm and chaotic systems. The performance of proposed algorithm is tested on a set of four test functions. Obtained promising results are presented, discussed and compared against the basic PSO strategy with inertia weight.


PSO Chaos Optimization Swarm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Dorigo, M.: Ant Colony Optimization and Swarm Intelligence. Springer (2006)Google Scholar
  3. 3.
    Eberhart, R., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann (2001)Google Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning, p. 41. Addison Wesley (1989) ISBN 0201157675Google Scholar
  5. 5.
    Storn, R., Price, R.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Zelinka: SOMA - self organizing migrating algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, ch. 7, vol. 33. Springer (2004) ISBN: 3-540-20167XGoogle Scholar
  7. 7.
    Beghi, A., Cecchinato, L., Cosi, G., Rampazzo, M.: A PSO-based algorithm for optimal multiple chiller systems operation. Applied Thermal Engineering 32, 31–40 (2012) ISSN 1359-4311Google Scholar
  8. 8.
    Yu, Y.-Z., Ren, X.-Y., Du, F.-S., Shi, J.-J.: Application of Improved PSO Algorithm in Hydraulic Pressing System Identification. International Journal of Iron and Steel Research 19(9), 29–35 (2012) ISSN 1006-706XGoogle Scholar
  9. 9.
    Arani, B.O., Mirzabeygi, P., Panahi, M.S.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm and Evolutionary Computation (January 9, 2013) ISSN 2210-6502Google Scholar
  10. 10.
    Zamani, K.N.: Optimization of optical absorption coefficient in asymmetric double rectangular quantum wells by PSO algorithm. Optics Communications (January 8, 2013) ISSN 0030-4018Google Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers and Mathematics with Applications (in press, 2013), doi:10.1016/j.camwa.2013.01.016Google Scholar
  12. 12.
    Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, Anchorage Alaska, pp. 69–73 (1998)Google Scholar
  13. 13.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), 3658–3670 (2011) ISSN 1568-4946Google Scholar
  14. 14.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  15. 15.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations