Advertisement

A Comparative Study of Machine Learning Regression Methods on LiDAR Data: A Case Study

  • Jorge Garcia-Gutierrez
  • Francisco Martínez-Álvarez
  • Alicia Troncoso
  • Jose C. Riquelme
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

Light Detection and Ranging (LiDAR) is a remote sensor able to extract vertical information from sensed objects. LiDAR-derived information is nowadays used to develop environmental models for describing fire behaviour or quantifying biomass stocks in forest areas. A multiple linear regression (MLR) with previous stepwise feature selection is the most common method in the literature to develop LiDAR-derived models. MLR defines the relation between the set of field measurements and the statistics extracted from a LiDAR flight. Machine learning has recently been paid an increasing attention to improve classic MLR results. Unfortunately, few studies have been proposed to compare the quality of the multiple machine learning approaches. This paper presents a comparison between the classic MLR-based methodology and common regression techniques in machine learning (neural networks, regression trees, support vector machines, nearest neighbour, and ensembles such as random forests). The selected techniques are applied to real LiDAR data from two areas in the province of Lugo (Galizia, Spain). The results show that support vector regression statistically outperforms the rest of techniques when feature selection is applied. However, its performance cannot be said statistically different from that of Random Forests when previous feature selection is skipped.

Keywords

LiDAR regression remote sensing soft computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia, M., Riano, D., Chuvieco, E., Danson, F.M.: Estimating biomass carbon stocks for a mediterranean forest in central spain using LiDAR height and intensity data. Remote Sensing of Environment 114(4), 816–830 (2010)CrossRefGoogle Scholar
  2. 2.
    Mutlu, M., Popescu, S.C., Stripling, C., Spencer, T.: Mapping surface fuel models using LiDAR and multispectral data fusion for fire behavior. Remote Sensing of Environment 112(1), 274–285 (2008)CrossRefGoogle Scholar
  3. 3.
    Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Gonçalves-Seco, L., Crecente, R., Miranda, D.: Estimation of biomass in eucalyptus globulus labill. forests using different LiDAR sampling densities. In: Proceedings of ForestSat (2010)Google Scholar
  4. 4.
    Muss, J.D., Mladenoff, D.J., Townsend, P.A.: A pseudo-waveform technique to assess forest structure using discrete LiDAR data. Remote Sensing of Environment 115(3), 824–835 (2010)CrossRefGoogle Scholar
  5. 5.
    Osborne, J., Waters, E.: Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research and Evaluation 8(2) (2002)Google Scholar
  6. 6.
    Salas, C., Ene, L., Gregoire, T.G., Næsset, E., Gobakken, T.: Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models. Remote Sensing of Environment 114(6), 1277–1285 (2010)CrossRefGoogle Scholar
  7. 7.
    Hudak, A.T., Crookston, N.L., Evans, J.S., Halls, D.E., Falkowski, M.J.: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LIDAR data. Remote Sensing of Environment 112, 2232–2245 (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, G., Hay, G.J.: A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and quickbird data. Photogrammetric Engineering and Remote Sensing 77(7), 733–741 (2011)Google Scholar
  9. 9.
    Zhao, K., Popescu, S., Meng, X., Pang, Y., Agca, M.: Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment 115(8), 1978–1996 (2011)CrossRefGoogle Scholar
  10. 10.
    Latifi, H., Nothdurft, A., Koch, B.: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 83(4), 395–407 (2010)CrossRefGoogle Scholar
  11. 11.
    Gleason, C.J., Im, J.: Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment 125, 80–91 (2012)CrossRefGoogle Scholar
  12. 12.
    Goncalves-Seco, L., Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Fraga-Bugallo, B., Crecente, R., Miranda, D.: Assessing attributes of high density eucalyptus globulus stands using airborne laser scanner data. International Journal of Remote Sensing 32(24), 9821–9841 (2011)CrossRefGoogle Scholar
  13. 13.
    Gonzalez-Ferreiro, E., Dieguez-Aranda, U., Miranda, D.: Estimation of stand variables in pinus radiata d. don plantations using different lidar pulse densities. Forestry 85(2), 281–292 (2012)CrossRefGoogle Scholar
  14. 14.
    Dieguez-Aranda, U., et al.: Herramientas selvicolas para la gestion forestal sostenible en Galicia. Xunta de Galicia (2009)Google Scholar
  15. 15.
    McGaughey, R.: FUSION/LDV: Software for LIDAR Data Analysis and Visualization. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Seattle (2009)Google Scholar
  16. 16.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)Google Scholar
  17. 17.
    Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory 14, 55–63 (1968)CrossRefGoogle Scholar
  18. 18.
    Parejo, J.A., García, J., Ruiz-Cortés, A., Riquelme, J.C.: Statservice: Herramienta de análisis estadístico como soporte para la investigación con metaheurísticas. In: Actas del VIII Congreso Expañol sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados (2012)Google Scholar
  19. 19.
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)MathSciNetMATHGoogle Scholar
  20. 20.
    Luengo, J., Garcia, S., Herrera, F.: A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests. Expert Systems with Applications 36, 7798–7808 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jorge Garcia-Gutierrez
    • 1
  • Francisco Martínez-Álvarez
    • 2
  • Alicia Troncoso
    • 2
  • Jose C. Riquelme
    • 1
  1. 1.Department of Computer ScienceUniversity of SevilleSevilleSpain
  2. 2.Department of Computer SciencePablo de Olavide UniversitySevillaSpain

Personalised recommendations