Advertisement

Intelligent Model for Fault Detection on Geothermal Exchanger of a Heat Pump

  • José Luis Casteleiro-Roca
  • Héctor Quintián
  • José Luis Calvo-Rolle
  • Emilio Corchado
  • María del Carmen Meizoso-López
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

The Heat Pump with geothermal exchanger is one of the best methods to heat a building. The heat exchanger is an element with probabilities of failure due its size and due it is outside construction. The present study shows a novel intelligent system design to detect faults on this type of heating equipment. The novel approach has been successfully empirically tested under a real dataset obtained during measurements along one year. It is based on classification techniques with the aim to detect failures in real time. Then the model is validated and verified over the building; it allows to obtain good results in all the operating conditions ranges.

Keywords

MLP J48 FLDA Heat Exchanger Heat Pump Geothermal Exchanger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langley, B.C.: Heat Pump Technology, 3rd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  2. 2.
    Sauer, H.J., Howell, R.H.: Heat Pump Systems. Wiley-Interscience, New York (1983)Google Scholar
  3. 3.
    Kakac, S., Liu, H.: Heat Exchangers: Selection, Rating and Thermal Design, 2nd edn. CRC Press, Boca Raton (2002)Google Scholar
  4. 4.
    Rezaei, A.B., Kolahdouz, E.M., Dargush, G.F., Weber, A.S.: Ground Source Heat Pump Pipe Performance with Tire Derived Aggregate. International Journal of Heat and Mass Transfer 55(11-12), 2844–2853 (2012)CrossRefGoogle Scholar
  5. 5.
    Lee, C.K.: Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation. Applied Energy 88(12), 4405–4410 (2011)CrossRefGoogle Scholar
  6. 6.
    Sanner, B., Karytsas, C., Mendrinos, D., Rybach, L.: Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe. Geothermics 32(4-6), 579–588 (2003)CrossRefGoogle Scholar
  7. 7.
    Tarnawski, V.R., Leong, W.H., Momose, T., Hamada, Y.: Analysis of Ground Source Heat Pumps with Horizontal Ground Heat Exchangers for Northern Japan. Renewable Energy 34(1), 127–134 (2009)CrossRefGoogle Scholar
  8. 8.
    Omer, A.M.: Ground-Source Heat Pumps Systems and Applications. Renewable and Sustainable Energy Reviews 12(2), 344–371 (2008)CrossRefGoogle Scholar
  9. 9.
    Banks, D.: An Introduction to Thermogeology: Ground-Source Heating and Cooling. Wiley/Blackwell, Oxford (2008)CrossRefGoogle Scholar
  10. 10.
    Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Germany (2006)Google Scholar
  11. 11.
    Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Germany (2011)Google Scholar
  12. 12.
    Hsu, W.Y.: Continuous EEG Signal Analysis for Asynchronous BCI Application. International Journal of Neural Systems 21(04), 335–350 (2011)CrossRefGoogle Scholar
  13. 13.
    Nozari, H.A., Shoorehdeli, M.A., Simani, S., Banadaki, H.D.: Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques. Neurocomputing 91, 29–47 (2012)CrossRefGoogle Scholar
  14. 14.
    Khan, S.A., Daachi, B., Djouani, K.: Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing 94, 111–120 (2012)CrossRefGoogle Scholar
  15. 15.
    Gryllias, K.C., Antoniadis, I.A.: A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments. Engineering Applications of Artificial Intelligence 25(2), 326–344 (2012)CrossRefGoogle Scholar
  16. 16.
    Tornil-Sin, S., Ocampo-Martinez, C., Puig, V., Escobet, T.: Robust Fault Detection of Non-Linear Systems Using Set-Membership State Estimation Based on Constraint Satisfaction. Engineering Applications of Artificial Intelligence 25(1), 1–10 (2012)CrossRefGoogle Scholar
  17. 17.
    Koç, M., Barkana, A.: A new solution to one sample problem in face recognition using FLDA. Applied Mathematics and Computation 217(24), 10368–10376 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián, H., Meizoso-Lopez, M.C.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Systems with Applications 40(13), 5188–5196 (2013)CrossRefGoogle Scholar
  19. 19.
    Parr, O.: Data Mining Cookbook. Modeling Data for Marketing, Risk, and Customer Relationship Management. John Wiley & Sons, Inc., New York (2001)Google Scholar
  20. 20.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Inc., Canada (2001)MATHGoogle Scholar
  21. 21.
    Khan, R., Hanbury, A., Stöttinger, J., Bais, A.: Color based skin classification. Pattern Recognition Letters 33(2), 157–163 (2012)CrossRefGoogle Scholar
  22. 22.
    Frank, E., Witten, I.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)Google Scholar
  23. 23.
    Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific Publishing, USA (2008)Google Scholar
  24. 24.
    Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Oxford (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Luis Casteleiro-Roca
    • 1
  • Héctor Quintián
    • 1
  • José Luis Calvo-Rolle
    • 1
  • Emilio Corchado
    • 2
  • María del Carmen Meizoso-López
    • 1
  1. 1.Departamento de Ingeniería IndustrialUniversidad de A CoruñaFerrolEspaña
  2. 2.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamancaEspaña

Personalised recommendations