A Multi-level Filling Heuristic for the Multi-objective Container Loading Problem

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

This work deals with a multi-objective formulation of the Container Loading Problem which is commonly encountered in transportation and wholesaling industries. The goal of the problem is to load the items (boxes) that would provide the highest total volume and weight to the container, without exceeding the container limits. These two objectives are conflicting because the volume of a box is usually not proportional to its weight. Most of the proposals in the literature simplify the problem by converting it into a mono-objective problem. However, in this work we propose to apply multi-objective evolutionary algorithms in order to obtain a set of non-dominated solutions, from which the final users would choose the one to be definitely carried out. To apply evolutionary approaches we have defined a representation scheme for the candidate solutions, a set of evolutionary operators and a method to generate and evaluate the candidate solutions. The obtained results improve previous results in the literature and demonstrate the importance of the evaluation heuristic to be applied.

Keywords

Container Loading Problem Multi-objective Optimisation Evolutionary Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bortfeldt, A., Wäscher, G.: Container Loading Problems - A State-of-the-Art Review. Otto-von-Guericke-Universität Magdeburg, Working Paper 1 (April 2012)Google Scholar
  2. 2.
    Scheithauer, G.: Algorithms for the Container Loading Problem. In: Operations Research Proceedings 1991, pp. 445–452. Springer (1992)Google Scholar
  3. 3.
    Dereli, T., Sena Das, G.: A Hybrid Simulated Annealing Algorithm for Solving Multi-objective Container Loading Problems. Applied Artificial Intelligence: An International Journal 24(5), 463–486 (2010)CrossRefGoogle Scholar
  4. 4.
    de Armas, J., González, Y., Miranda, G., León, C.: Parallelization of the Multi-Objective Container Loading Problem. In: IEEE World Congress on Computational Intelligence (WCCI), Brisbane, Australia, pp. 155–162 (June 2012)Google Scholar
  5. 5.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Academic Press, Orlando (1985)MATHGoogle Scholar
  6. 6.
    Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, New York (1986)MATHGoogle Scholar
  7. 7.
    Eiben, A.E.: In: Bäck, T., Fogel, D., Michalewicz, M. (eds.) Handbook of Evolutionary Computation. IOP Publishing Ltd. and Oxford University Press (1998)Google Scholar
  8. 8.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  9. 9.
    Horn, J.: In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. Institute of Physics Publishing (1997)Google Scholar
  10. 10.
    Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: In: Goldberg, D.E., Koza, J.R. (eds.) Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer (2007)Google Scholar
  11. 11.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar
  12. 12.
    Coello Coello, C.A.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 3–13. IEEE Press (1999), citeseer.ist.psu.edu/coellocoello99updated.html
  13. 13.
    de Armas, J., Miranda, G., Leon, C., Segura, C.: Optimisation of a Multi-Objective Two-Dimensional Strip Packing Problem based on Evolutionary Algorithms. International Journal of Production Research 48(7), 2011–2028 (2009)CrossRefGoogle Scholar
  14. 14.
    León, C., Miranda, G., Segura, C.: METCO: A Parallel Plugin-Based Framework for Multi-Objective Optimization. International Journal on Artificial Intelligence Tools 18(4), 569–588 (2009)CrossRefGoogle Scholar
  15. 15.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yanira González
    • 1
  • Gara Miranda
    • 1
  • Coromoto León
    • 1
  1. 1.Dpto. Estadística, I.O. y ComputaciónUniversidad de La LagunaLa LagunaSpain

Personalised recommendations