The Fuzzy WOD Model with Application to Biogas Plant Location

  • Camilo Franco
  • Mikkel Bojesen
  • Jens Leth Hougaard
  • Kurt Nielsen
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)


The decision of choosing a facility location among possible alternatives can be understood as a multi-criteria problem where the solution depends on the available knowledge and the means of exploiting it. In this sense, knowledge can take various forms, where the imprecise nature of information can be expressed by degrees of intensity in which the alternatives satisfy the given criteria. Hence, such degrees can be gradually expressed either by unique values or by intervals, in order to fully represent the characteristics of each alternative. This paper examines the selection of biogas plant location based on a decision support model capable of handling and exploiting both interval and non-interval forms of knowledge. Such model is built on a fuzzy approach to weighted overlap dominance, where an interactive procedure is developed allowing the individuals to explore and put into perspective how their different attitudes affect the final ranking of alternatives.


Decision support fuzzy data weighted overlap dominance interval degrees biogas plant location 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31, 343–349 (1989)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barrenechea, E., Fernández, A., Herrera, F., Bustince, H.: Construction of interval-valued fuzzy preference relations using ignorance functions: Interval-valued non dominance criterion. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds.) Eurofuse 2011. AISC, vol. 107, pp. 243–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research 200, 198–215 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Chen, T., Tsao, C.: The interval-valued fuzzy TOPSIS method and experimental analysis. Fuzzy Sets and Systems 159, 1410–1428 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Farahani, R., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: A survey. Applied Mathematical Modelling 34, 1689–1709 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Goguen, J.: The logic of inexact concepts. Synthese 19, 325–373 (1969)MATHCrossRefGoogle Scholar
  7. 7.
    Grattan-Guinness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Mathematical Logic Quarterly 22, 149–160 (1976)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Higgs, G.: Integrating multi-criteria techniques with geographical information systems in waste facility location to enhance public transportation. Waste Management & Research 24, 105–117 (2006)CrossRefGoogle Scholar
  9. 9.
    Hougaard, J.L., Nielsen, K.: Weighted Overlap Dominance - A procedure for interactive selection on multidimensional interval data. Applied Mathematical Modelling 35, 3958–3969 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Kahraman, C., Ruan, D., Dogan, I.: Fuzzy group decision-making for facility location selection. Information Sciences 157, 135–153 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Martínez, L., Ruan, D., Herrera, F.: Computing with words in decision support systems: an overview on models and applications. International Journal of Computational Intelligence Systems 3, 382–395 (2010)Google Scholar
  12. 12.
    Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems 158, 2429–2442 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Özturk, M., Pirlot, M., Tsoukias, A.: Representing preferences using intervals. Artificial Intelligence 175, 1194–1222 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Özturk, M., Tsoukias, A.: Bipolar preference modeling and aggregation support. International Journal of Intelligent Systems 23, 970–984 (2008)CrossRefGoogle Scholar
  15. 15.
    Rodríguez, J.T., Franco, C.A., Montero, J.: On the semantics of bipolarity and fuzziness. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds.) Eurofuse 2011. AISC, vol. 107, pp. 193–205. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theory and Decision 31, 49–73 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sayadi, M., Heydari, M., Shahanaghi, K.: Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling 33, 2257–2262 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elseiver Science Publishing Co., New York (1983)MATHGoogle Scholar
  19. 19.
    Statistikbanken (2013),
  20. 20.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences 8, 199–249 (1975)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Camilo Franco
    • 1
  • Mikkel Bojesen
    • 1
  • Jens Leth Hougaard
    • 1
  • Kurt Nielsen
    • 1
  1. 1.Department of Food and Resource Economics, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations