Intelligent Model to Obtain Initial and Final Conduction Angle of a Diode in a Half Wave Rectifier with a Capacitor Filter

  • José Luis Casteleiro-Roca
  • Héctor Quintián
  • José Luis Calvo-Rolle
  • Emilio Corchado
  • María del Carmen Meizoso-López
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

The half wave rectifier with a capacitor filter circuit is a typically non-linear case of study. It requires a hard work to solve it on analytic form. The main reason is due to the fact that the output voltage comes alternatively from the source and from the capacitor. This study describes a novel intelligent model to obtain the time when the changes of the sources occur. For the operation range, a large set of work points are calculated to create the dataset. To achieve the final solution, several simple regression methods have been tested. The novel model is verified empirically by using CAD software to simulate electronic circuits and by analytical methods. The novel model allows to obtain good results in all the operating range.

Keywords

Single phase wave rectifier capacitance filter neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, D.W.: Power electronics. McGraw-Hill, New York (2011)Google Scholar
  2. 2.
    Rashid, M.H.: Power electronics handbook: devices, circuits, and applications. Butterworth-Heinemann (2011)Google Scholar
  3. 3.
    Luo, F., Ye, H.: Power electronics. CRC Press, Singapure (2011)Google Scholar
  4. 4.
    Malvino, A.P., Bates, D.J.: Electronic principles. Recording for Blind & Dyslexic (2008)Google Scholar
  5. 5.
    Hayes-Roth, F., Waterman, D., Lenat, D.: Building expert systems. Addison-Wesley Pub. Co. (1983)Google Scholar
  6. 6.
    Cimino, M.G.C.A., Lazzerini, B., Marcelloni, F., Ciaramella, A.: An adaptive rule-based approach for managing situation-awareness. Expert Syst. Appl. 39, 10796–10811 (2012)CrossRefGoogle Scholar
  7. 7.
    Hayes-Roth, F.: Rule-based systems. Commun. ACM 28, 921–932 (1985)CrossRefGoogle Scholar
  8. 8.
    Mark, J., Goldberg, M.: Multiple regression analysis and mass assessment: A review of the Issues. Appraisal Journal 56(1), 89–109 (1988)Google Scholar
  9. 9.
    Yankun, L., Xueguang, S., Wensheng, C.: MRA-based revised CBR model for cost prediction in the early stage of construction projects. Expert Systems with Applications 39, 5214–5222 (2012)CrossRefGoogle Scholar
  10. 10.
    Ho, L.H., Feng, S.Y., Lee, Y.C., Yen, T.M.: Using modified IPA to evaluate supplier’s performance: Multiple regression analysis and DEMATEL approach. Expert Systems with Applications 39, 7102–7109 (2012)CrossRefGoogle Scholar
  11. 11.
    Do, A.Q., Grudnitski, G.: A neural network approach to residential property appraisal. The Real Estate Appraiser 58(3), 38–45 (1992)Google Scholar
  12. 12.
    Guan, J., Zurada, J., Levitan, A.S.: An adaptive neuro-fuzzy inference system based approach to real estate property assessment. Journal of Real Estate Research 30(4), 395–420 (2008)Google Scholar
  13. 13.
    Peterson, S., Flanagan, A.B.: Neural network hedonic pricing models in mass real estate appraisal. Journal of Real Estate Research 31(2), 147–164 (2009)Google Scholar
  14. 14.
    Calvo-Rolle, J., Manchón-González, I., López-García, H.: Neuro-robust controller for non-linear systems. DYNA 86(3), 308–317 (2011)CrossRefGoogle Scholar
  15. 15.
    Taffese, W.Z.: Case-based reasoning and neural networks for real estate valuation. In: Proceedings of 25th International Multi-conference: Artificial Intelligence and Applications, Innsbruck, Austria, vol. 84(9) (2007)Google Scholar
  16. 16.
    Nieves-Acedo, J., Santos-Grueiro, I., Garcia-Bringas, P., et al.: Enhancing the prediction stage of a model predictive control systems through meta-classifiers. DYNA 88(3), 290–298 (2013)CrossRefGoogle Scholar
  17. 17.
    Alvarez-Huerta, A., Gonzalez-Miguelez, R., Garcia-Metola, D., et al.: Drywell temperature prediction of a nuclear power plant by means of artificial neural networks. DYNA 86(4), 467–473 (2011)CrossRefGoogle Scholar
  18. 18.
    Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)MATHGoogle Scholar
  19. 19.
    Vapnik, V.: The nature of statistical learning theory. Springer (1995)Google Scholar
  20. 20.
    Ye, J., Xiong, T.: SVM versus least squares SVM. In: 11th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 640–647 (2007)Google Scholar
  21. 21.
    Yankun, L., Xueguang, S., Wensheng, C.: A consensus least support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72, 217–222 (2007)CrossRefGoogle Scholar
  22. 22.
    O’Connell, A.A.: Logistic regression models for ordinal response variables. Sage Publications (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Luis Casteleiro-Roca
    • 1
  • Héctor Quintián
    • 1
  • José Luis Calvo-Rolle
    • 1
  • Emilio Corchado
    • 2
  • María del Carmen Meizoso-López
    • 1
  1. 1.Departamento de Ingeniería IndustrialUniversidad de A CoruñaFerrolEspaña
  2. 2.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamancaEspaña

Personalised recommendations