Parsimonious Support Vector Machines Modelling for Set Points in Industrial Processes Based on Genetic Algorithm Optimization

  • Andrés Sanz-García
  • Julio Fernández-Ceniceros
  • Fernando Antoñanzas-Torres
  • F. Javier Martínez-de-Pisón-Ascacibar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

An optimization based on genetic algorithms for both feature selection and model tuning is presented to improve the prediction of set points in industrial lines. The objective is the development of an automatic procedure that efficiently generates parsimonious prediction models with higher generalisation capacity. These models can achieve higher accuracy in predictions, maintaining the high quality of products while working with continual changes in the production cycle. The proposed method deals with three strict restrictions: few individuals per population, low number of holds and runs in model validation procedure and a reduced number of maximum generations. To fullfill these restrictions, we propose to include in the optimization the reranking of the individuals by their complexity when no significant difference is found between the values of their fitness functions. The method is applied to develop support vector machines for predicting three temperature set points in the annealing furnace of a continuous hot-dip galvanising line. The results demonstrate the rerank makes more efficiently and easily the process of obtaining parsimonious models without reducing performance.

Keywords

Genetic Algorithm Optimization Support Vector Machine Galvanising Line Parsimony Criterion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bian, J., Zhu, Y., Liu, X.H., Wang, G.D.: Development of hot dip galvanized steel strip and its application in automobile industry. Journal of Iron and Steel Research International 13(3), 47–50 (2006)CrossRefGoogle Scholar
  2. 2.
    Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Corchado, E., Graña, M., Wozniak, M.: Editorial: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  4. 4.
    Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010)Google Scholar
  5. 5.
    Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1999)Google Scholar
  6. 6.
    Lu, Y.Z., Markward, S.: Development and application of an integrated neural system for an hdcl. IEEE Transactions on Neural Networks 8(6), 1328–1337 (1997)CrossRefGoogle Scholar
  7. 7.
    Martínez-De-Pisón, F.J.: Optimización mediante técnicas de minería de datos del ciclo de recocido de una línea de galvanizado. Ph.D. thesis, Mechanical Department. University of La Rioja, Logroño, Spain (2003)Google Scholar
  8. 8.
    Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In: ICGA, pp. 151–157 (1991)Google Scholar
  9. 9.
    Mitchell, M.: An introduction to genetic algorithms. The MIT Press (1998)Google Scholar
  10. 10.
    Pernía-Espinoza, A., Castejón-Limas, M., González-Marcos, A., Lobato-Rubio, V.: Steel annealing furnace robust neural network model. Ironmaking and Steelmaking 32(5), 418–426 (2005)CrossRefGoogle Scholar
  11. 11.
    Sanz-García, A., Fernández-Ceniceros, J., Fernández-Martínez, R., Martínez-de Pisón, F.J.: Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on an annealing furnace. Ironmaking & Steelmaking, 1–12 (November 2012)Google Scholar
  12. 12.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  13. 13.
    Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrés Sanz-García
    • 1
  • Julio Fernández-Ceniceros
    • 1
  • Fernando Antoñanzas-Torres
    • 1
  • F. Javier Martínez-de-Pisón-Ascacibar
    • 1
  1. 1.EDMANS Research GroupUniversity of La RiojaLogroñoSpain

Personalised recommendations