Skip to main content

One-Loop Cosmology and Frame Dependence

  • Chapter
  • First Online:
Non-minimal Higgs Inflation and Frame Dependence in Cosmology

Part of the book series: Springer Theses ((Springer Theses))

  • 640 Accesses

Abstract

We will start with the most technical chapter of this thesis because the results obtained in this part will serve as a basis for the cosmological investigations of the Higgs inflation scenario we will discuss in Chap. 6. We will make use of the generalised Schwinger–DeWitt algorithm discussed in Sect. 4.5 in order to calculate the one-loop effective action for gravity coupled to scalar fields—a setup especially interesting in the cosmological context of inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A minimal coupling to gravity means no coupling with derivative terms of the metric \(R\sim \partial ^2\,g\).

  2. 2.

    In general, this is important in order to obtain the correct symmetrization structure and—especially in the mixed sectors—to obtain the correct contributions to the structures with derivatives acting on different perturbations. However, in this case it does not matter because \(S_\mathrm{{gb}}\) only contributes to the graviton-graviton sector.

  3. 3.

    An additional factor of \(1/2\) in [24] is due to a different definition of the pole in dimension \(\epsilon \).

  4. 4.

    A more general dependence of the functional couplings on the multiplet \(\Phi ^{a}\) would destroy the \(O(N)\) invariance of the action.

  5. 5.

    We will specify precisely what we mean by Jordan frame and Einstein frame and give a mathematical definition in Sect. 5.3.1.

  6. 6.

    This is similar to the situation of choosing an ordinary space-time coordinate system. For example, we can imagine a rotational invariant problem and try to describe it once in Cartesian coordinates and once in polar coordinates. Of course, the physical content of the problem is the same, described in both coordinate systems. But the polar coordinates will be better suited to interpret the physical results, since they are optimally adapted to the symmetries of the problem. This freedom of the choice of configuration space variables—the “generalized coordinates”—lies at the very heart of the Lagrangian formalism.

  7. 7.

    As in the case of spherical coordinates in a flat space, we can of course have a non-vanishing connection despite the fact that there is no curvature. The difference to a curved space is connected with the fact that we can transform the connection away globally in a flat space.

  8. 8.

    In the following, we will neglect the issue of gauge transformations. In general, we have to separate the gauge transformations from the arbitrary field reparametrizations, which complicates the formalism and is of minor interest for the purpose of this section.

  9. 9.

    The choice of the configuration space metric is by itself a subtle point. One of the criteria to fix \(G_{ij}\) proposed in [26] is that \(G_{ij}\) should be determined by the coefficients of the highest derivative terms, present in the classical action \(S[\phi ]\).

  10. 10.

    A frequent argument in favour of the Jordan frame is that this is the frame in which real physical distances are measured in terms of the physical Jordan frame metric.

References

  1. Barvinsky, A.O., Kamenshchik, A.Yu.: Effective equations of motion and initial conditions for inflation in quantum cosmology. Nucl. Phys. B 532, 339 (1998)

    Google Scholar 

  2. Barvinsky, A.O., Kamenshchik, A.Yu.: Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field. Phys. Rev. D 48, 3677 (1993)

    Google Scholar 

  3. Barvinsky, A.O., Kamenshchik, A.Yu.: Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field. J. Cosmol. Astropart. Phys. 12, 003 (2009)

    Google Scholar 

  4. Barvinsky, A.O., Kamenshchik, A.Yu.: Higgs boson, renormalization group, and naturalness in cosmology. Eur. Phys. J. C. 72, 2219 (2012)

    Google Scholar 

  5. Barvinsky, A.O., Vilkovisky, G.A.: The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity. Phys. Lett. B 131, 313 (1983)

    Article  ADS  Google Scholar 

  6. Barvinsky, A.O., Vilkovisky, G.A.: The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rep. 119, 1 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bezrukov, F.L., Magnin, A., Shaposhnikov, M.: Standard Model Higgs boson mass from inflation. Phys. Lett. B 675, 88 (2009)

    Article  ADS  Google Scholar 

  8. Bezrukov, F.L., Shaposhnikov, M.: The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2007)

    Article  ADS  Google Scholar 

  9. Borchers, H.J.: Über die Mannigfaltigkeit der interpolierenden Felder zu einer kausalen S-Matrix. Nuovo Cimento 15, 784 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer, New York (2010)

    Google Scholar 

  11. Coleman, S.R., Weinberg, E.J.: Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  12. De Simone, A., Hertzberg, M.P., Wilczek, F.: Running inflation in the Standard Model. Phys. Lett. B 678, 1 (2009)

    Article  ADS  Google Scholar 

  13. DeWitt, B.S.: Dynamical theory of groups and fields. Blackie & Son, London (1965)

    MATH  Google Scholar 

  14. DeWitt, B.S.: Quantum theory of gravity. I. Canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  15. Dicke, R.H.: Mach’s principle and Invariance under Transformation of Units. Phys. Rev. 125, 2163 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Esposito, G., Kamenshchik, A.Yu., Pollifrone, G.: Euclidian Quantum Gravity on Manifolds with Boundary. Springer, New York (1997)

    Google Scholar 

  17. Faraoni, V., Gunzig, E., Nardone, P.: Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 20, 121 (1999)

    ADS  Google Scholar 

  18. Kaiser, D.I.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)

    Article  ADS  Google Scholar 

  19. Kallosh, R.E., Tyutin, I.V.: The Equivalence theorem and gauge invariance in renormalizable theories. Yad. Fiz. 17, 190 (1973)

    MathSciNet  Google Scholar 

  20. Parker, L., Christensen, S.M.: MathTensor: A system for Doing Tensor Analysis by Computer. Addison-Wesley, Redwood City (1994)

    Google Scholar 

  21. Parker, L.E., Toms, D.J.: Quantum Field Theory in Curved Spactime. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  22. Shapiro, I.L., Takata, H.: One-loop renormalization of the four-dimensional theory for quantum dilaton gravity. Phys. Rev. D 52, 2162 (1995)

    Article  ADS  Google Scholar 

  23. Steinwachs, C.F., Kamenshchik, A.Yu.: One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 84, 024026 (2011)

    Google Scholar 

  24. ’t Hooft, G. and Veltman, M. J. G., : One-loop divergencies in the theory of gravitation. Ann. Inst. Henri Poincaré A 20, 69 (1974)

    Google Scholar 

  25. Tyutin, I.V.: Parametrization dependence of nonlinear quantum field theories (in Russian). Yad. Fiz. 35, 222 (1982)

    MathSciNet  Google Scholar 

  26. Vilkovisky, G.A.: The unique effective action in quantum field theory. Nucl. Phys. B 234, 125 (1984)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Friedrich Steinwachs .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinwachs, C.F. (2014). One-Loop Cosmology and Frame Dependence. In: Non-minimal Higgs Inflation and Frame Dependence in Cosmology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01842-3_5

Download citation

Publish with us

Policies and ethics