Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 157))

Abstract

We test the a posteriori error estimates of discontinuous Galerkin (DG) discretization errors (Adjerid and Baccouch, J. Sci. Comput. 33(1):75–113, 2007; Adjerid and Baccouch, J. Sci. Comput. 38(1):15–49, 2008; Adjerid and Baccouch Comput. Methods Appl. Mech. Eng. 200:162–177, 2011) for hyperbolic problems on adaptively refined unstructured triangular meshes. A local error analysis allows us to construct asymptotically correct a posteriori error estimates by solving local hyperbolic problems on each element. The Taylor-expansion-based error analysis (Adjerid and Baccouch, J. Sci. Comput. 33(1):75–113, 2007; Adjerid and Baccouch, J. Sci. Comput. 38(1):15–49, 2008; Adjerid and Baccouch Comput. Methods Appl. Mech. Eng. 200:162–177, 2011) does not apply near discontinuities and shocks and lead to inaccurate estimates under uniform mesh refinement. Here, we present several computational results obtained from adaptive refinement computations that suggest that even in the presence of shocks our error estimates converge to the true error under adaptive mesh refinement. We also show the performance of several adaptive strategies for hyperbolic problems with discontinuous solutions.

AMS(MOS) subject classifications. Primary 65N30, 65N50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-dimensional hyperbolic problems part I: Superconvergence error analysis. J. Sci. Comput., 33(1):75–113, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-dimensional hyperbolic problems part II: A posteriori error estimation. J. Sci. Comput., 38(1):15–49, 2008.

    Article  MathSciNet  Google Scholar 

  3. S. Adjerid and M. Baccouch. A Posteriori error analysis of the discontinuous Galerkin method for two-dimensional hyperbolic problems on unstructured meshes. Computer Methods in Applied Mechanics and Engineering, 200: 162–177, 2011.

    Article  MathSciNet  Google Scholar 

  4. S. Adjerid, K. Devine, J. Flaherty, and L. Krivodonova. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Computer Methods in Applied Mechanics and Engineering, 191:1097–1112, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Adjerid and T. C. Massey. A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Computer Methods in Applied Mechanics and Engineering, 191:5877–5897, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Adjerid and I. Mechai. A posteriori discontinuous Galerkin error estimation on tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 201–204:157–178, 2012.

    Article  MathSciNet  Google Scholar 

  7. S. Adjerid and T. Weinhart. Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems. Computer Methods in Applied Mechanics and Engineering, 198:3113–3129, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Adjerid and T. Weinhart. Asymptotically exact discontinuous Galerkin error estimates for linear symmetric hyperbolic systems. Applied Numerical Mathematics, in press, 2011.

    Google Scholar 

  9. S. Adjerid and T. Weinhart. Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems. Mathematics of Computation, 80: 1335–1367, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comp. Phys., 131:267–279, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Biswas, K. Devine, and J. E. Flaherty. Parallel adaptive finite element methods for conservation laws. Applied Numerical Mathematics, 14:255–284, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Cockburn, G. E. Karniadakis, and C. W. Shu, editors. Discontinuous Galerkin Methods Theory, Computation and Applications, Lectures Notes in Computational Science and Engineering, volume 11. Springer, Berlin, 2000.

    Google Scholar 

  13. B. Cockburn, S. Y. Lin, and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin methods of scalar conservation laws III: One dimensional systems. Journal of Computational Physics, 84:90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: General framework. Mathematics of Computation, 52:411–435, 1989.

    MathSciNet  MATH  Google Scholar 

  15. K. D. Devine and J. E. Flaherty. Parallel adaptive hp-refinement techniques for conservation laws. Computer Methods in Applied Mechanics and Engineering, 20:367–386, 1996.

    MathSciNet  MATH  Google Scholar 

  16. K. Ericksson and C. Johnson. Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM Journal on Numerical Analysis, 28: 12–23, 1991.

    Google Scholar 

  17. J. E. Flaherty, R. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H. Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. Journal of Parallel and Distributed Computing, 47:139–152, 1997.

    Article  Google Scholar 

  18. G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for CFD. Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  19. L. Krivodonova and J. E. Flaherty. Error estimation for discontinuous Galerkin solutions of two-dimensional hyperbolic problems. Advances in Computational Mathematics, 19:57–71, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Bryan Johnson (undergraduate student at the University of Nebraska at Omaha) for applying the adaptive algorithms to the contact problem to generate the results for Example 3.

The work of the Slimane Adjerid author was supported in part by NSF grant DMS-0809262. The work of the Mahboub Baccouch author was supported by the NASA Nebraska Space Grant Program and UCRCA at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Adjerid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adjerid, S., Baccouch, M. (2014). Adaptivity and Error Estimation for Discontinuous Galerkin Methods. In: Feng, X., Karakashian, O., Xing, Y. (eds) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-01818-8_3

Download citation

Publish with us

Policies and ethics