Novel Matrix Based Feature Extraction Method for Face Recognition Using Gaborface Features

  • Qi Zhu
  • Yong Xu
  • Yuwu Lu
  • Jiajun Wen
  • Zizhu Fan
  • Zhengming Li
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 238)

Abstract

This study proposes a framework to integrate the Gaborface features and the matrix based feature extraction method for face recognition. In this framework, we first select a subset of Gaborfaces to construct the optimal ensemble Gaborface. Then, a two-phase matrix based feature extraction method, i.e.: two-dimensional linear discriminant analysis (2DLDA) plus multi-subspaces principle component analysis (MSPCA), is developed to directly and effectively extract features from the optimal ensemble Gaborface matrixes. Experiment results on ORL and AR face datasets demonstrate the effectiveness of our method.

Keywords

face recognition Gaborface Gabor filter optimization matrix based feature extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, Y., Zhong, A., Yang, J., Zhang, D.: LPP solution schemes for use with face recognition. Pattern Recognition 43(12), 4165–41761 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Fan, Z., Xu, Y., Zhang, D.: Local linear discriminant analysis framework using sample neighbors. IEEE Transactions on Neural Networks 22(7), 1119–11321 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, Y.-W., Xu, R., Ushikome, A.: Serially-connected dual 2d pca for efficient face representation and face recognition. International Journal of Innovative Computing, Information and Control 5(11), 4367–4372Google Scholar
  4. 4.
    Xu, Y., Zhang, D., Yang, J., Jin, Z., Yang, J.: Evaluate dissimilarity of samples in feature space for improving KPCA. International Journal of Information Technology & Decision Making 10(3), 479–495 (2011)CrossRefGoogle Scholar
  5. 5.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  6. 6.
    Xu, Y., Zhang, D., Jin, Z., Li, M., Yang, J.-Y.: A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition 39(6), 1026–1033 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  8. 8.
    Gao, Q., Zhang, L., Zhang, D.: Face Recognition using FLDA with Single Training Image Per-person. Applied Mathematics and Computation 205, 726–734 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71, 1857–1865 (2008)CrossRefGoogle Scholar
  10. 10.
    Gao, Q., Zhang, L., Zhang, D., Xu, H.: Independent components extraction from image matrix. Pattern Recognition Letters 31(3), 171–178 (2010)CrossRefGoogle Scholar
  11. 11.
    Yang, W., Wang, J., Ren, M., Zhang, L., Yang, J.: Feature extraction using fuzzy inverse FDA. Neurocomputing 72(13-15), 3384–3390 (2009)CrossRefGoogle Scholar
  12. 12.
    Zhang, Q., Zhou, C.J., Zhao, J.: Face Recognition Based on FLDA, CPCA and Improved HMM. International Journal of Innovative Computing, Information and Control 6(2), 801–808 (2010)MathSciNetGoogle Scholar
  13. 13.
    Li, M., Yuan, B.Z.: 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters 26, 527–532 (2005)CrossRefGoogle Scholar
  14. 14.
    Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature level: complex-matrixbased fusion scheme. Optical Engineering 49(3) (2010)Google Scholar
  15. 15.
    Wang, L., et al.: 2D Gaborface representation method for face recognition with ensemble and multichannel model. Image and Vision Computing 26, 820–828 (2008)CrossRefGoogle Scholar
  16. 16.
    Lee, Y.-C., Chen, C.-H.: A Gabor Feature Based Horizontal and Vertical Discriminant for Face Verification. International Journal of Innovative Computing, Information and Control 9(5), 2111–2123 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Qi Zhu
    • 1
    • 2
  • Yong Xu
    • 1
  • Yuwu Lu
    • 1
    • 2
  • Jiajun Wen
    • 1
    • 2
  • Zizhu Fan
    • 3
  • Zhengming Li
    • 4
  1. 1.Key Laboratory of Network Oriented Intelligent ComputationShenzhenChina
  2. 2.Harbin Institute of TechnologyShenzhen Graduate SchoolShenzhenChina
  3. 3.School of Basic ScienceEast China Jiaotong UniversityNanchangChina
  4. 4.Guangdong Industrial Training CenterGuangdong Polytechnic Normal UniversityGuangzhouChina

Personalised recommendations