Directional Discriminant Analysis for Image Feature Extraction

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 238)

Abstract

A novel subspace learning algorithm based on nearest feature line and directional derivative gradient is proposed in this paper. The proposed algorithm combines neighborhood discriminant nearest feature line analysis and directional derivative gradient to extract the local discriminant features of the samples. A discriminant power criterion based on nearest feature line is used to find the most discriminant direction in this paper. Some experiments are implemented to evaluate the proposed algorithm and the experimental results demonstrate the effectiveness of the proposed algorithm.

Keywords

Directional derivative gradient feature extraction nearest feature line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, J.-B., Chu, S.-C., Pan, J.-S., Jain, L.C.: Multiple Viewpoints Based Overview for Face Recognition. Journal of Information Hiding and Multimedia Signal Processing 3, 352–369 (2012)CrossRefGoogle Scholar
  2. 2.
    Krinidis, S., Pitas, I.: Statistical Analysis of Human Facial Expressions. Journal of Information Hiding and Multimedia Signal Processing 1, 241–260 (2010)Google Scholar
  3. 3.
    Zhang, L., Zhang, L., Zhang, D., Guo, Z.: Phase Congruency Induced Local Features for Finger-Knuckle-Print Recognition. Pattern Recognition 45, 2522–2531 (2012)CrossRefMATHGoogle Scholar
  4. 4.
    Wu, J., Zhou, Z.H.: Face Recognition with One Training Image Per Person. Pattern Recognition Letters 23, 1711–1719 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Belhumenur, P.N., Hepanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis Machine Intelligence 19, 711–720 (1997)CrossRefGoogle Scholar
  6. 6.
    Li, J.-B., Pan, J.-S., Lu, Z.-M.: Kernel Optimization-Based Discriminant Analysis for Face Recognition. Neural Computing and Applications 18, 603–612 (2009)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Frangi, A.F., Yang, J.-Y., Zhang, D., Jin, Z.: KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 230–244 (2005)CrossRefGoogle Scholar
  8. 8.
    Li, J.-B., Yu, L.-J., Sun, S.-H.: Refined Kernel Principal Component Analysis Based Feature Extraction. Chinese Journal of Electronics 20, 467–470 (2011)Google Scholar
  9. 9.
    Pan, J.-S., Li, J.-B., Lu, Z.-M.: Adaptive Quasiconformal Kernel Discriminant Analysis. Neurocomputing 71, 2754–2760 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Li, J.-B., Pan, J.-S., Chen, S.-M.: Kernel Self-Optimized Locality Preserving Discriminant Analysis for Feature Extraction and Recognition. Neurocomputing 74, 3019–3027 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, J.-B., Pan, J.-S., Chu, S.-C.: Kernel Class-wise Locality Preserving Projection. Information Sciences 178, 1825–1835 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Li, J.-B., Gao, H., Pan, J.-S.: Common Vector Analysis of Gabor Features with Kernel Space Isomorphic Mapping for Face Recognition. International Journal of Innovative Computing, Information and Contro 6(10) (October 2010)Google Scholar
  13. 13.
    Xu, Y., Zhang, D., Jin, Z., Li, M., Yang, J.Y.: A Fast Kernel-Based Nonlinear Discriminant Analysis for Multi-Class Problems. Pattern Recognition 39, 1026–1033 (2006)CrossRefMATHGoogle Scholar
  14. 14.
    Xu, Y., Zhang, D.: Represent and Fuse Bimodal Biometric Images at the Feature Fevel: Complex-Matrix-Based Fusion Scheme. Opt. Eng. 49, 037002 (2010)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 131–137 (2004)CrossRefGoogle Scholar
  16. 16.
    Yang, J., Zhang, D., Yong, X., Yang, J.Y.: Two-dimensional discriminant transform for face recognition. Pattern Recognition 37, 1125–1129 (2005)CrossRefGoogle Scholar
  17. 17.
    Yan, L., Pan, J.-S., Chu, S.-C., Muhammad, K.K.: Adaptively weighted sub-directional two-dimensional linear discriminant analysis for face recognition. Future Generation Computer Systems 28, 232–235 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, S.Z., Lu, J.: Face Recognition Using the Nearest Feature Line Method. IEEE Trans. Neural Networks 10, 439–443 (1999)CrossRefGoogle Scholar
  19. 19.
    Feng, Q., Pan, J.-S., Yan, L.: Restricted Nearest Feature Line with Ellipse for Face Recognition. Journal of Information Hiding and Multimedia Signal Processing 3, 297–305 (2012)Google Scholar
  20. 20.
    Feng, Q., Pan, J.-S., Yan, L.: Nearest Feature Centre Classifier for Face Recognition. Ellectronics Letters 48, 1120–1122 (2012)CrossRefGoogle Scholar
  21. 21.
    Zheng, Y.-J., Yang, J.-Y., Yang, J., Wu, X.-J., Jin, Z.: Nearest Neighbour Line Nonparametric Discriminant Analysis for Feature Extraction. Electronics Letters 42, 679–680 (2006)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Yuan, Y., Li, X.: Generalised Nearest Feature Line for Subspace Learning. Electronics Letters 43, 1079–1080 (2007)CrossRefGoogle Scholar
  23. 23.
    Lu, J., Tan, Y.P.: Uncorrelated Discriminant Nearest Feature Line Analysis for Face Recognition. IEEE Signal Processing Letter 17, 185–188 (2010)CrossRefGoogle Scholar
  24. 24.
    Yan, L., Pan, J.-S., Zheng, W., Chu, S.-C., Roddick, J.F.: Neighborhood Discriminant Nearest Feature Line Analysis for Face Recognition. Journal of Internet Technology 14, 344–347 (2013)Google Scholar
  25. 25.
    Yan, L., Wang, C., Chu, S.-C., Pan, J.-S.: Discriminant Analysis Based on Nearest Feature Line. In: Yang, J., Fang, F., Sun, C. (eds.) IScIDE 2012. LNCS, vol. 7751, pp. 356–363. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Zuniga, O.A., Haralick, R.M.: Integrated Directional Derivative Gradient Operator. IEEE Trans. Systems, Man, and Cybernetics 17, 508–517 (1987)CrossRefGoogle Scholar
  27. 27.
    Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report 24 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina

Personalised recommendations