Skip to main content

Microfluidic Fabrication of Vesicles

  • Chapter
  • First Online:
Advances in Transport Phenomena 2011

Part of the book series: Advances in Transport Phenomena ((ADVTRANS,volume 3))

Abstract

Vesicles are compartments enclosed by a thin membrane, which is made up of amphiphilic molecules arranged into ordered layers. Vesicle-like structures are Nature’s choice for encapsulating important biochemical species that enable living processes, and are increasingly important as artificial structures for the encapsulation and release of drugs, biomolecules and other active ingredients for biomedical, pharmaceutical, food and consumer industries. Advances in microfluidic technologies have provided a new set of tools for unraveling the science behind formation of vesicles and fabricating novel vesicles. While traditional approaches for fabricating vesicles rely on self-assembly of amphiphiles, the precise control of flow afforded in microfluidic devices enables directed assembly of the amphiphiles. Thus, techniques such as hydrodynamic flow focusing, controlled emulsion-templating and pulsatile jetting offer unprecedented degree of control over vesicle structures. This creates new opportunities to engineer the structures of vesicles and tailor them for specific applications. In this review, we introduce current understanding behind different kinds of vesicles, survey conventional and microfluidic techniques for their formation, discuss new approaches of encapsulation and release of active ingredients in microfluidic vesicles, and point to future research and development in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. New, R.R.C.: Liposomes : A Practical Approach. IRL Press, Oxford (1990). (Oxford University Press)

    Google Scholar 

  2. Discher, B.M., et al.: Polymersomes: Tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999)

    Article  Google Scholar 

  3. Zhang, L., Eisenberg, A.: Multiple morphologies of “Crew-Cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995)

    Article  Google Scholar 

  4. Munoz, S., et al.: Ultrathin monolayer lipid-membranes from a new family of crown ether-based bolar-amphiphiles. J. Am. Chem. Soc. 115, 1705–1711 (1993)

    Article  Google Scholar 

  5. Schreier, H., Bouwstra, J.: Liposomes and niosomes as topical drug carriers—dermal and transdermal drug-delivery. J. Control. Release 30, 1–15 (1994)

    Article  Google Scholar 

  6. Dinsmore, A.D., et al.: Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002)

    Article  Google Scholar 

  7. Hsu, M.F., et al.: Self-assembled shells composed of colloidal particles: fabrication and characterization. Langmuir 21, 2963–2970 (2005)

    Article  Google Scholar 

  8. Segota, S., Tezak, D.: Spontaneous formation of vesicles. Adv. Colloid Interface Sci. 121, 51–75 (2006)

    Article  Google Scholar 

  9. Antonietti, M., Förster, S.: Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003)

    Article  Google Scholar 

  10. Lasic, D.D.: The mechanism of vesicle formation. Biochem. J. 256, 1–11 (1988)

    Google Scholar 

  11. Kita-Tokarczyk, K., et al.: Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46, 3540–3563 (2005)

    Article  Google Scholar 

  12. Wang, Z.G.: Curvature instability of diblock copolymer bilayers. Macromolecules 25, 3702–3705 (1992)

    Article  Google Scholar 

  13. Marrink, S.J., Mark, A.E.: Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J. Am. Chem. Soc. 125, 15233–15242 (2003)

    Article  Google Scholar 

  14. Uneyama, T.: Density functional simulation of spontaneous formation of vesicle in block copolymer solutions. J. Chem. Phys. 126, 114902 (2007)

    Article  Google Scholar 

  15. Yamamoto, S., et al.: Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J. Chem. Phys. 116, 5842–5849 (2002)

    Article  Google Scholar 

  16. Noguchi, H., Takasu, M.: Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys. Rev. E 64, 041913 (2001)

    Article  Google Scholar 

  17. Du, J., O’Reilly, R.K.: Advances and challenges in smart and functional polymer vesicles. Soft Matter 5, 3544–3561 (2009)

    Article  Google Scholar 

  18. He, X.H., Schmid, F.: Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers. Macromolecules 39, 2654–2662 (2006)

    Article  Google Scholar 

  19. Rank, A., et al.: Preparation of monodisperse block copolymer vesicles via a thermotropic cylinder-vesicle transition. Langmuir 25, 1337–1344 (2009)

    Article  Google Scholar 

  20. Discher, D.E., Ahmed, F.: Polymersomes. Ann. Rev. Biomed. Eng. 8, 323–341 (2006)

    Article  Google Scholar 

  21. Israelachvili, J.N., et al.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. Ii 72, 1525–1568 (1976)

    Article  Google Scholar 

  22. Won, Y.Y., et al.: Cryogenic transmission electron microscopy (cryo-TEM) of micelles and vesicles formed in water by polyethylene oxide)-based block copolymers. J. Phys. Chem. B 106, 3354–3364 (2002)

    Article  Google Scholar 

  23. Hyde, S.T.: Curvature and the global structure of interfaces in surfactant-water systems. J. De Phys. 51, C7209–C7228 (1990)

    Google Scholar 

  24. Bates, F.S., Fredrickson, G.H.: Block copolymer thermodynamics—theory and experiment. Ann. Rev. Phys. Chem. 41, 525–557 (1990)

    Article  Google Scholar 

  25. Bates, F.S.: Polymer–polymer phase-behavior. Science 251, 898–905 (1991)

    Article  Google Scholar 

  26. Bermudez, H., et al.: Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35, 8203–8208 (2002)

    Article  Google Scholar 

  27. Dobereiner, H.G., et al.: Mapping vesicle shapes into the phase diagram: a comparison of experiment and theory. Phys. Rev. E 55, 4458–4474 (1997)

    Article  Google Scholar 

  28. Mui, B.L.S., et al.: Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys. J. 69, 930–941 (1995)

    Article  Google Scholar 

  29. Storm, G., Crommelin, D.J.A.: Liposomes: quo vadis? Pharm. Sci. Technol. Today 1, 19–31 (1998)

    Article  Google Scholar 

  30. Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)

    Article  Google Scholar 

  31. Sun, B.Y., Chiu, D.T.: Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Anal. Chem. 77, 2770–2776 (2005)

    Article  Google Scholar 

  32. Howse, J.R., et al.: Templated formation of giant polymer vesicles with controlled size distributions. Nat. Mater. 8, 507–511 (2009)

    Article  Google Scholar 

  33. Taylor, P., et al.: Fabrication of 2D arrays of giant liposomes on solid substrates by microcontact printing. Phys. Chem. Chem. Phys. 5, 4918–4922 (2003)

    Article  Google Scholar 

  34. Evans, E., Needham, D.: Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 91, 4219–4228 (1987)

    Article  Google Scholar 

  35. Mui, B., et al.: Extrusion technique to generate liposomes of defined size. Liposomes Pt A 367, 3–14 (2003)

    Article  Google Scholar 

  36. Macdonald, R.C., et al.: Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303 (1991)

    Article  Google Scholar 

  37. Frisken, B.J., et al.: Studies of vesicle extrusion. Langmuir 16, 928–933 (2000)

    Article  Google Scholar 

  38. Pautot, S., et al.: Production of unilamellar vesicles using an inverted emulsion. Langmuir 19, 2870–2879 (2003)

    Article  Google Scholar 

  39. Pautot, S., et al.: Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. USA 100, 10718–10721 (2003)

    Article  Google Scholar 

  40. Shah, R.K., et al.: Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008)

    Article  Google Scholar 

  41. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)

    Article  Google Scholar 

  42. Brody, J.P., et al.: Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996)

    Article  Google Scholar 

  43. Knight, J.B., et al.: Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998)

    Article  Google Scholar 

  44. Beebe, D.J., et al.: Physics and applications of microfluidics in biology. Ann. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  Google Scholar 

  45. Gambin, Y., et al.: Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Lab Chip 10, 598–609 (2010)

    Article  Google Scholar 

  46. Pollack, L., et al.: Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proc. Natl. Acad. Sci. USA 96, 10115–10117 (1999)

    Article  Google Scholar 

  47. Lipman, E.A., et al.: Single-molecule measurement of protein folding kinetics. Science 301, 1233–1235 (2003)

    Article  Google Scholar 

  48. Koester, S., et al.: Visualization of flow-aligned type I collagen self-assembly in tunable pH gradients. Langmuir 23, 357–359 (2007)

    Article  Google Scholar 

  49. Koester, S., et al.: An in situ study of collagen self-assembly processes. Biomacromolecules 9, 199–207 (2008)

    Article  Google Scholar 

  50. Yun, J., et al.: Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchannels. Chem. Eng. Sci. 64, 4115–4122 (2009)

    Article  Google Scholar 

  51. Jahn, A., et al.: Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4, 2077–2087 (2010)

    Article  Google Scholar 

  52. Jahn, A., et al.: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674–2675 (2004)

    Article  Google Scholar 

  53. Jahn, A., et al.: Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293 (2007)

    Article  Google Scholar 

  54. Massignani, M., et al.: Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale. Small 5, 2424–2432 (2009)

    Article  Google Scholar 

  55. Gullotti, E., Yeo, Y.: Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol. Pharm. 6, 1041–1051 (2009)

    Article  Google Scholar 

  56. Hong, J.S., et al.: Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir 26, 11581–11588 (2010)

    Article  Google Scholar 

  57. Seiffert, S., et al.: Smart microgel capsules from macromolecular precursors. J. Am. Chem. Soc. 132, 6606–6609 (2010)

    Article  Google Scholar 

  58. Thiele, J., et al.: Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics. Langmuir 26, 6860–6863 (2010)

    Article  Google Scholar 

  59. Brown, L., et al.: Polymersome production on a microfluidic platform using pH sensitive block copolymers. Lab Chip 10, 1922–1928 (2010)

    Article  Google Scholar 

  60. Karnik, R., et al.: Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8, 2906–2912 (2008)

    Article  Google Scholar 

  61. Kolishetti, N. et al.: Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 17939–17944. 19 Oct 2010 (2010)

    Google Scholar 

  62. Tan, Y.C., et al.: Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc. 128, 5656–5658 (2006)

    Article  Google Scholar 

  63. Shum, H.C., et al.: Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability. J. Am. Chem. Soc. 130, 9543–9549 (2008)

    Article  Google Scholar 

  64. Shum, H.C., et al.: Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24, 7651–7653 (2008)

    Article  MathSciNet  Google Scholar 

  65. Hayward, R.C., et al.: Dewetting Instability during the Formation of polymersomes from block-copolymer-stabilized double emulsions. Langmuir 22, 4457–4461 (2006)

    Article  Google Scholar 

  66. Shum, H.C., et al.: Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces. J. Am. Chem. Soc. 133, 4420–4426 (2011)

    Article  Google Scholar 

  67. Funakoshi, K., et al.: Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc. 129, 12608 (2007)

    Article  Google Scholar 

  68. Stachowiak, J.C., et al.: Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci. USA 105, 4697–4702 (2008)

    Article  Google Scholar 

  69. Ota, S., et al.: Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew. Chem. Int. Ed. 48, 6533–6537 (2009)

    Article  Google Scholar 

  70. Beales, P.A., et al.: Specific adhesion between DNA-functionalized “Janus’’ vesicles: size-limited clusters. Soft Matter 7, 1747–1755 (2011)

    Article  Google Scholar 

  71. Shum, H.C., et al.: Multicompartment polymersomes from double emulsions. Angew. Chem. Int. Ed. 50, 1648–1651 (2011)

    Article  Google Scholar 

  72. Kisak, E.T., et al.: The vesosome—A multicompartment drug delivery vehicle. Curr. Med. Chem. 11, 199–219 (2004)

    Article  Google Scholar 

  73. Kim, S.H., et al.: Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc. 133, 15165–15171 (2011). doi:10.1021/ja205687k

    Article  Google Scholar 

  74. Onaca, O., et al.: Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol. Biosci. 9, 129–139 (2009)

    Article  Google Scholar 

  75. Brochard-Wyart, F., et al.: Transient pores in stretched vesicles: role of leak-out. Physica A 278, 32–51 (2000)

    Article  Google Scholar 

  76. Karatekin, E., et al.: Transient pores in vesicles. Polym. Int. 52, 486–493 (2003)

    Article  Google Scholar 

  77. Karatekin, E., et al.: Cascades of transient pores in giant vesicles: line tension and transport. Biophys. J. 84, 1734–1749 (2003)

    Article  Google Scholar 

  78. Sandre, O., et al.: Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. 96, 10591 (1999)

    Article  Google Scholar 

  79. Ahmed, F., Discher, D.E.: Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J. Controlled Release 96, 37–53 (2004)

    Article  Google Scholar 

  80. Zhang, Z., et al.: The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27, 1741–1748 (2006)

    Article  Google Scholar 

  81. Sanson, C., et al.: Biocompatible and Biodegradable Poly(trimethylene carbonate)-b-Poly (l-glutamic acid) Polymersomes: size control and stability. Langmuir 26, 2751–2760 (2010)

    Article  Google Scholar 

  82. Gallagher, F.A., et al.: Magnetic resonance imaging of pH in vivo using hyperpolarized C-13-labelled bicarbonate. Nature 453, 940–973 (2008)

    Article  Google Scholar 

  83. Gerweck, L.E., Seetharaman, K.: Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996)

    Google Scholar 

  84. Chen, W., et al.: pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J. Controlled Release 142, 40–46 (2010)

    Article  Google Scholar 

  85. Agut, W., et al.: pH and temperature responsive polymeric micelles and polymersomes by self-assembly of Poly 2-(dimethylamino)ethyl methacrylate -b-Poly(glutamic acid) double hydrophilic block copolymers. Langmuir 26, 10546–10554 (2010)

    Article  Google Scholar 

  86. Needham, D., Dewhirst, M.W.: The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev. 53, 285–305 (2001)

    Article  Google Scholar 

  87. Hong, C.Y., et al.: Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide). J. Polym. Sci. Part A-Polym. Chem. 42, 4873–4881 (2004)

    Article  Google Scholar 

  88. Qin, S., et al.: Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater. 18, 2905 (2006)

    Article  Google Scholar 

  89. Napoli, A., et al.: Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20, 3487–3491 (2004)

    Article  Google Scholar 

  90. Cerritelli, S., et al.: PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8, 1966–1972 (2007)

    Article  Google Scholar 

  91. Kuai, R., et al.: Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG Co-modified liposomes. Mol. Pharm. 7, 1816–1826 (2010)

    Article  Google Scholar 

  92. Song, L., et al.: Structure of staphylococcal α-Hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996)

    Article  Google Scholar 

  93. Nisisako, T., Torii, T.: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8, 287–293 (2008)

    Article  Google Scholar 

  94. Malloggi, F., et al.: Monodisperse colloids synthesized with nanofluidic technology. Langmuir 26, 2369–2373 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Cheung Shum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shum, H.C., Thiele, J., Kim, SH. (2014). Microfluidic Fabrication of Vesicles. In: Wang, L. (eds) Advances in Transport Phenomena 2011. Advances in Transport Phenomena, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-01793-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01793-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01792-1

  • Online ISBN: 978-3-319-01793-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics