A Dynamic Measurement of Agent Autonomy in the Layered Adjustable Autonomy Model

  • Salama A. Mostafa
  • Mohd Sharifuddin Ahmad
  • Azhana Ahmad
  • Muthukkaruppan Annamalai
  • Aida Mustapha
Part of the Studies in Computational Intelligence book series (SCI, volume 513)

Abstract

In a dynamically interactive systems that contain a mix of humans’ and software agents’ intelligence, managing autonomy is a challenging task. Giving an agent a complete control over its autonomy is a risky practice while manually setting the agent’s autonomy level is an inefficient approach. In this paper, we propose an autonomy measurement mechanism and its related formulae for the Layered Adjustable Autonomy (LAA) model. Our model provides a mechanism that optimizes autonomy distribution, consequently, enabling global control of the autonomous agents that guides or even withholds them whenever necessary. This is achieved by formulating intervention rules on the agents’ decision-making capabilities through autonomy measurement criteria. Our aim is to create an autonomy model that is flexible and reliable.

Keywords

Software agent Multi-agent system (MAS) Layered Adjustable Autonomy (LAA) Autonomy measurement attributes Decision-making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, M., Callaghan, V.: Managing Control, Convenience and Autonomy: A Study of Agent Autonomy in Intelligent Environments. In: Special Issue on Agent-Based Approaches to Ambient Intelligence. AISE series, pp. 159–196. IOS Press (2012)Google Scholar
  2. 2.
    Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of Adjustable Autonomy and Mixed-Initiative Interaction. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 17–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Sellner, B., Heger, F., Hiatt, L., Simmons, R., Singh, S.: Coordinated Multi-agent Teams and Sliding Autonomy for Large-scale Assembly. Proceeding of the IEEE 94(7), 1425–1444 (2006)CrossRefGoogle Scholar
  4. 4.
    Brookshire, J., Singh, S., Simmons, R.: Preliminary Results in Sliding Autonomy for Coordinated Teams. In: Proceedings of the AAAI 2004 Spring Symposium, CA (2004)Google Scholar
  5. 5.
    Roehr, T.M., Shi, Y.: Using a Self-confidence Measure for a System-initiated Switch between Autonomy Modes. In: Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Sapporo, Japan, pp. 507–514 (2010)Google Scholar
  6. 6.
    Sheridan, T.B., Verplank, W.L.: Human and Computer Control of Undersea Teleoperators. Technical report, MIT Man-Machine Systems Laboratory, Cambridge, MA (1978)Google Scholar
  7. 7.
    Mercier, S., Tessier, C., Dehais, F.: Adaptive Autonomy for a Human-Robot Architecture. In: 3rd National Conference on Control Architectures of Robots, Bourges (2008)Google Scholar
  8. 8.
    Mostafa, S.A., Ahmad, M.S., Annamalai, M., Ahmad, A., Gunasekaran, S.S.: A Dynamically Adjustable Autonomic Agent Framework. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 631–642. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Myers, K.L., Morley, D.N.: Human Directability of Agents. In: K-CAP 2001. ACM 1-58113–380 (2001)Google Scholar
  10. 10.
    Brainov, S., Hexmoor, H.: Quantifying Relative Autonomy in Multiagent Interaction. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Autonomy, pp. 55–74. Kluwer, Dordrecht (2002)Google Scholar
  11. 11.
    Brainov, S., Hexmoor, H.: Quantifying Relative Autonomy in Multiagent Interaction. In: Proc. of the IJCAI 2001 Workshop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents, Seattle, WA, pp. 27–35 (2001)Google Scholar
  12. 12.
    Mostafa, S.A., Ahmad, M.S., Annamalai, M., Ahmad, A., Gunasekaran, S.S.: A Conceptual Model of Layered Adjustable Autonomy. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 619–630. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Mostafa, S.A., Ahmad, M.S., Annamalai, M., Ahmad, A., Basheer, G.S.: A Layered Adjustable Autonomy Approach for Dynamic Autonomy Distribution. In: The 7th International KES Conference on Agents and Multi-agent Systems Technologies and Applications (KES-AMSTA), vol. 252, pp. 335–345. IOS Press, Hue City (2013)Google Scholar
  14. 14.
    Parasuraman, R., Sheridan, T., Wickens, C.: A Model for Types and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man and Cybernetics, Part A 30(3), 286–297 (2000)CrossRefGoogle Scholar
  15. 15.
    Barber, K.S., Martin, C.E.: Agent Autonomy: Specification, Measurement, and Dynamic Adjustment. In: Proceedings of the Autonomy Control Software Workshop at Autonomous Agents (Agents 1999), Seattle, WA, pp. 8–15 (1999)Google Scholar
  16. 16.
    Mercier, S., Dehais, F., Lesire, C., Tessier, C.: Resources as Basic Concepts for Authority Sharing. In: Humans Operating Unmanned Systems, HUMOUS 2008 (2008)Google Scholar
  17. 17.
    Huber, M.J.: Agent Autonomy: Social Integrity and Social Independence. In: Proceedings of the International Conference on Information Technology ITNG 2007, pp. 282–290. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  18. 18.
    Mark, E., Anderson, J., Crysdale, G.: Achieving Flexible Autonomy in Multi-Agent Systems using Constraints. Applied Artificial Intelligence: An International Journal 6, 103–126 (1992)CrossRefGoogle Scholar
  19. 19.
    Anderson, J., Evans, M.: Supporting Flexible Autonomy in a Simulation Environment for Intelligent Agent Designs. In: The Proceedings of the Fourth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, pp. 60–66. IEEE, Tucson (1993)CrossRefGoogle Scholar
  20. 20.
    Luck, M., D’Inverno, M., Munroe, S.: Autonomy: Variable and Generative. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Autonomy, pp. 9–22. Kluwer (2003)Google Scholar
  21. 21.
    Castelfranchi, C.: Guarantees for Autonomy in Cognitive Agent Architecture. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS (LNAI), vol. 890, pp. 56–70. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Moore, R.C.: A Formal Theory of Knowledge and Action. In: Allen, J.F., Hendler, J., Tate, A. (eds.) Readings in Planning, pp. 480–519. Morgan Kaufmann (1990)Google Scholar
  23. 23.
    Laird, J.E., Rosenbloom, P.S.: The Evolution of the Soar Cognitive Architecture. In: Steier, D.M., Mitchell, T.M. (eds.) Mind Matters: A Tributr to Allen Newell, pp. 1–50 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Salama A. Mostafa
    • 1
  • Mohd Sharifuddin Ahmad
    • 1
  • Azhana Ahmad
    • 1
  • Muthukkaruppan Annamalai
    • 2
  • Aida Mustapha
    • 3
  1. 1.College of Information TechnologyUniversiti Tenaga NasionalKajangMalaysia
  2. 2.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Faculty of Computer Sciences and Information TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations