Advertisement

Fuzzy Rules and SVM Approach to the Estimation of Use Case Parameters

  • Svatopluk Štolfa
  • Jakub Štolfa
  • Pavel Krömer
  • Ondřej Koběrský
  • Martin Kopka
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 237)

Abstract

Many decisions that are needed for the planning of the software development project are based on previous experience and competency of project manager. One of the most important questions is how much effort will be necessary to complete the task. In our case, the task is described by the use case and manger has to estimate the effort to implement it. However, such estimations are not always correct, not estimated extra work has to be done sometimes. Our intent is to support manager’s decision by the estimation tool that uses know parameters of the use cases to predict other parameters that has to be estimated. This paper focuses on the usage of our method on the real data and evaluates its results in real development. The method uses parameterized use case model trained from the previously done use cases to predict extra work parameter. Estimation of test use cases is done several times according to the managers needs during the project execution.

Keywords

software development estimation SVM fuzzy rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crestani, F., Pasi, G.: Soft information retrieval: Applications of fuzzy set theory and neural networks. In: Kasabov, N., Kozma, R. (eds.) Neuro-Fuzzy Techniques for Intelligent Information Systems, pp. 287–315. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Upper Saddle River (1995)MATHGoogle Scholar
  3. 3.
    Kraft, D.H., Petry, F.E., Buckles, B.P., Sadasivan, T.: Genetic Algorithms for Query Optimization in Information Retrieval: Relevance Feedback. In: Sanchez, E., Shibata, T., Zadeh, L.A. (eds.) Genetic Algorithms and Fuzzy Logic Systems. World Scientific, Singapore (1997)Google Scholar
  4. 4.
    Krömer, P., Platoš, J., Snášel, V., Abraham, A., Prokop, L., Mišák, S.: Genetically evolved fuzzy predictor for photovoltaic power output estimation. In: 2011 Third International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 41–46. IEEE (2011)Google Scholar
  5. 5.
    Krömer, P., Snášel, V., Platoš, J.: Learning patterns from data by an evolutionary-fuzzy approach. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 127–135. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Snášel, V., Krömer, P., Platoš, J., Abraham, A.: The evolution of fuzzy classifier for data mining with applications. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 349–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9) (September 1990)Google Scholar
  9. 9.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering Applications of the Self-Organizing Map. Proceedings of the IEEE 84(10) (October 1996)Google Scholar
  10. 10.
    Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks 11(3) (May 2000)Google Scholar
  11. 11.
    Heemstra, F.J.: Software cost estimation. Information and Software Technology 34(10) (October 1992)Google Scholar
  12. 12.
    Boehm, B.: Software Engineering Economics. Prentice Hall (1981)Google Scholar
  13. 13.
    Staron, M., Meding, W.: Defect Inflow Prediction in Large Software Projects. e-Informatica Software Engineering Journal 3(1) (2009)Google Scholar
  14. 14.
    Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on Use Case Points. Information and Software Technology 53(3), 200–213 (2011)CrossRefGoogle Scholar
  15. 15.
    Štolfa, J., Štolfa, S., Koběrský, O., Kopka, M., Kožuszník, J., Snášel, V.: Methodology for Estimating Working Time Effort of the Software Project. In: 2012 Databases, Texts, Specifications, and Objects (DATESO), pp. 25–37 (2012)Google Scholar
  16. 16.
    Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Chapman & Hall/CRC (2009)Google Scholar
  17. 17.
    Beshah, T., Ejigu, D., Kromer, P., Snasel, V., Platos, J., Abraham, A.: Learning the classification of traffic accident types. In: 2012 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 463–468 (September 2012)Google Scholar
  18. 18.
    Campbell, C., Ying, Y.: Learning with support vector machines. Synthesis Lectures on Artificial Intelligence and Machine Learning 5(1), 1–95 (2011)CrossRefGoogle Scholar
  19. 19.
    Feuring, T.: Fuzzy-systeme. Institut für Informatik. Westfälische Wilhelms Universität, Münster (1996)Google Scholar
  20. 20.
    Hamel, L.H.: Knowledge Discovery with Support Vector Machines. Wiley-Interscience, New York (2009)CrossRefGoogle Scholar
  21. 21.
    Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning). The MIT Press (December 2001)Google Scholar
  22. 22.
    Jantzen, J.: Tutorial On Fuzzy Logic. Technical Report 98-E-868 (logic), Technical University of Denmark, Dept. of Automation (1998)Google Scholar
  23. 23.
    Kecman, V.: Support vector machines an introduction. In: Wang, L. (ed.) Support Vector Machines: Theory and Applications. STUDFUZZ, vol. 177, pp. 1–47. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Krömer, P., Platoš, J., Snášel, V., Abraham, A.: Fuzzy classification by evolutionary algorithms. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 313–318. IEEE System, Man, and Cybernetics Society (2011)Google Scholar
  25. 25.
    Pasi, G.: Fuzzy sets in information retrieval: State of the art and research trends. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. STUDFUZZ, vol. 220, pp. 517–535. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Štolfa, J., Koběrský, O., Kopka, M., Krömer, P., Štolfa, S., Kožuszník, J., Snášel, V.: Value estimation of the use case parameters using SOM and fuzzy rules. In: The International ACM Conference of Emergent Digital EcoSystems, MEDES (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Svatopluk Štolfa
    • 1
  • Jakub Štolfa
    • 1
  • Pavel Krömer
    • 1
  • Ondřej Koběrský
    • 1
  • Martin Kopka
    • 1
  • Václav Snášel
    • 1
  1. 1.Department of Computer ScienceVSB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations