Measuring Phenotypic Structural Complexity of Artificial Cellular Organisms

Approximation of Kolmogorov Complexity with Lempel-Ziv Compression
  • Stefano Nichele
  • Gunnar Tufte
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 237)


Artificial multi-cellular organisms develop from a single zygote to different structures and shapes, some simple, some complex. Such phenotypic structural complexity is the result of morphogenesis, where cells grow and differentiate according to the information encoded in the genome. In this paper we investigate the structural complexity of artificial cellular organisms at phenotypic level, in order to understand if genome information could be used to predict the emergent structural complexity. Our measure of structural complexity is based on the theory of Kolmogorov complexity and approximations. We relate the Lambda parameter, with its ability to detect different behavioral regimes, to the calculated structural complexity. It is shown that the easily computable Lempel-Ziv complexity approximation has a good ability to discriminate emergent structural complexity, thus providing a measurement that can be related to a genome parameter for estimation of the developed organism’s phenotypic complexity. The experimental model used herein is based on 1D, 2D and 3D Cellular Automata.


Developmental Systems Emergence Structural Complexity CAs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doursat, R., Sánchez, C., Dordea, R., Fourquet, D., Kowaliw, T.: Embryomorphic engineering: emergent innovation through evolutionary development. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering. UCS Series, pp. 275–311. Springer (2012)Google Scholar
  2. 2.
    Kumar, S., Bentley, P.J.: Biologically inspired evolutionary development. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 57–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from French flag to boolean circuits. In: Kumar, S., Bentley, P.J. (eds.) On Growth, Form and Computers, pp. 278–301. Elsevier Limited, Oxford (2003)CrossRefGoogle Scholar
  4. 4.
    Tufte, G.: Evolution, development and environment toward adaptation through phenotypic plasticity and exploitation of external information. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, pp. 624–631. MIT Press, Cambridge (2008)Google Scholar
  5. 5.
    Li, M., Vitanyi, P.M.B.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, New York (1997)CrossRefMATHGoogle Scholar
  6. 6.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. In: Forrest, S. (ed.) Emergent Computation, pp. 12–37. MIT Press (1991)Google Scholar
  7. 7.
    Wolfram, S.: Universality and complexity in CA. Physica D 10(1-2), 1–35 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  9. 9.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 42, 230–265 (1936)Google Scholar
  10. 10.
    Hartmann, M., Lehre, P.K., Haddow, P.C.: Evolved digital circuits and genome complexity. In: NASA/DoD Conference on Evolvable Hardware 2005, pp. 79–86. IEEE Press (2005)Google Scholar
  11. 11.
    Lehre, P.K., Haddow, P.C.: Developmental mappings and phenotypic complexity. In: Proceedings of 2003 IEEE CEC, vol. 1, pp. 62–68. IEEE Press (2003)Google Scholar
  12. 12.
    Deutsch, L.P.: DEFLATE Compressed data format specification version 1.3 (1996)Google Scholar
  13. 13.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E., 1098–1102 (1952)Google Scholar
  15. 15.
    Tufte, G., Nichele, S.: On the correlations between developmental diversity and genomic composition. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 1507–1514. ACM (2011)Google Scholar
  16. 16.
    Nichele, S., Tufte, G.: Genome parameters as information to forecast emergent developmental behaviors. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 186–197. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO 2008, pp. 843–850. ACM (2008)Google Scholar
  18. 18.
    Ulam, S.: Los Alamos National Lab 1909-1984, vol. 15(special issue), pp. 1–318. Los Alamos Science, Los Alamos (1987)Google Scholar
  19. 19.
    von Neumann, J.: Theory and organization of complicated automata. In: Burks, A.W. (ed.), pp. 29–87 (2, part one). Based on transcript of lectures delivered at the University of Illinois (December 1949)Google Scholar
  20. 20.
    Zenil, H., Villareal-Zapata, E.: Asymptotic behaviour and ratios of complexity in cellular automata. arXiv/1304.2816 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations