Skip to main content

An Intelligent Multi-agent Recommender System

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 237)

Abstract

This article presents a Multi-Agent approach for handling the problem of recommendation. The proposed system works via two main agents; namely, the matching agent and the recommendation agent. Experimental results showed that the proposed rough mereology based Multi-agent system for solving the recommendation problem is scalable and has possibilities for future modification and adaptability to other problem domains. Moreover, it succeeded in reducing the information overload while recommending relevant decisions to users. The system achieved high accuracy in ranking using users profile and information system profiles. The resulted value of the Mean Absolute Error (MAE) is acceptable compared to other recommender systems applied other computational intelligence approaches.

Keywords

  • rough mereology
  • multi-agent
  • recommender system

This work was partially supported by Grant of SGS No. SP2013/70, VSB - Technical University of Ostrava, Czech Republic., and was supported by the European Regional Development Fund in the IT4 Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods: research, development and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-01781-5_19
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-01781-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles For Personalized Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  2. Macho, S., Torrens, M., Faltings, B.: A Multi-Agent Recommender System For Planning Meetings. In: Proc. of the 4th International Conference on Autonomous Agents, Workshop on Agent-based Recommender Systems, WARS 2000 (2000)

    Google Scholar 

  3. Morais, A.J., Oliveira, E., Jorge, A.M.: A multi-agent recommender system. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 281–288. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  4. Marivate, V.N., Ssali, G., Marwala, T.: An Intelligent Multi-Agent Recommender System For Human Capacity Building. In: Proc. of the 14th IEEE Mediterranean Electrotechnical Conference, pp. 909–915 (2008)

    Google Scholar 

  5. Blanco-Fernández, Y., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., Barragáns-Martínez, B., López-Nores, M., García-Duque, J., Fernández-Vilas, A., Díaz-Redondo, R.P.: AVATAR: An Advanced Multi-agent Recommender System of Personalized TV Contents by Semantic Reasoning. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.) WISE 2004. LNCS, vol. 3306, pp. 415–421. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  6. Veltkamp, R.C., Hagedoorn, M.: Shape Similarity Measures, Properties and Constructions. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 467–476. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  7. Lesniewski, S.: On the foundations of set theory. Topoi 2, 7–52 (1982)

    Google Scholar 

  8. Polkowski, L., Artiemjew, P.: Granular Computing in the Frame of Rough Mereology. A Case Study: Classification of Data into Decision Categories by Means of Granular Reflections of Data. International Journal of Intelligent Systems 26(6), 555–571 (2011)

    CrossRef  Google Scholar 

  9. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  10. Linden, G., Smith, B., York, J.: Amazon.Com Recommendations: Item-To-Item Collaborative Filtering. IEEE Internet Computing 7(1) (2003)

    Google Scholar 

  11. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of Dimensionality Reductio in Recommender System - A Case Study. In: Acm Webkdd Workshop (2000)

    Google Scholar 

  12. Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  13. Koren, Y.: Tutorial on Recent Progress in Collaborative Filtering. In: Pu, P., Bridge, D.G., Mobasher, B., Ricci, F. (eds.) Proceedings of the 2008 Acm Conference on Recommender Systems, Recsys 2008, Lausanne, Switzerland, October 23-25, pp. 333–334 (2008)

    Google Scholar 

  14. Ettouney, R.S., Mjalli, F.S., Zaki, J.G., El-Rifai, M.A., Ettouney, H.M.: Forecasting Ozone Pollution using Artificial Neural Networks. Mgmt. Environ. Quality 20, 668–683 (2009)

    CrossRef  Google Scholar 

  15. Abdul-Wahab, S., Bouhamra, W., Ettouney, H., Sowerby, B., Crittenden, B.D.: Predicting Ozone Levels: A Statistical Model for Predicting Ozone Levels. Environ. Sci. Pollut. Res. 3, 195–204 (1996)

    CrossRef  Google Scholar 

  16. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough Sets. Communications of the ACM 38(11), 88–95 (1995)

    CrossRef  Google Scholar 

  17. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: UAI, Technical report MSR-TR-98-12, pp. 43–52 (1998)

    Google Scholar 

  18. UCI ML Repository Datasets, http://www.ics.uci.edu/~mlearn/databases/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood A. Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mahmood, M.A., El-Bendary, N., Platoš, J., Hassanien, A.E., Hefny, H.A. (2014). An Intelligent Multi-agent Recommender System. In: Abraham, A., Krömer, P., Snášel, V. (eds) Innovations in Bio-inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-01781-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01781-5_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01780-8

  • Online ISBN: 978-3-319-01781-5

  • eBook Packages: EngineeringEngineering (R0)