Advertisement

Mathematical Morphology Based Fovea Center Detection Using Retinal Fundus Images

  • Ganapatsingh Rajaput
  • Bharati Reshmi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 235)

Abstract

Exudative diabetic maculopathy is a frequent cause of visual deterioration in patients with diabetic retinopathy and represents a form of diabetic macular edema (DME), which is derived from leaking retinal vessels. The detection of the fovea center is a prerequisite for diagnosis of exudative diabetic maculopathy. In this work, a novel method for fovea center detection from color retinal fundus images is presented. With the prior knowledge of relative location of the optic disc, mathematical morphology is used to detect fovea center. The proposed method is robust to inconveniences caused by diabetic retinopathy lesions like microaneurysms, hemorrhages and exudates. Experiments were performed on local and public databases that yielded success rate of 91.38 % and 91.75 %, respectively.

Keywords

diabetic maculopathy diabetic retinopathy exudates optic disk fovea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rema, M., Pradeepa, R.: Diabetic Retinopathy: An Indian Perspective. Journal of Medical Research 125, 297–370 (2007)Google Scholar
  2. 2.
    Daniel, W., et al.: Grading the severity of diabetic macular edema cases based on color eye images. In: Emre, M. (ed.) Color Medical Image Analysis. Lecture Notes in Computer Vision and Biomechanics, vol. 9, pp. 109–128. Springer (2013)Google Scholar
  3. 3.
    Nayak, J., Bhat, P.S., Acharya, U.R.: Automatic identification of diabetic maculopathy stages using fundus images. Journal of Medical Engineering and Technology 33(2), 119–129 (2009)CrossRefGoogle Scholar
  4. 4.
    Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localization of the optic disc, fovea and retinal blood vessels from digital color fundus images. British Journal of Ophthalmology 83, 902–910 (1999)CrossRefGoogle Scholar
  5. 5.
    Narasimha, I.H., Can, A., Roysam, B., Stewart, C.V., Tanenbaum, H.L., Majerovics, A., Singh, H.: Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Transactions on Biomedical Engineering 53(6), 1084–1098 (2006)CrossRefGoogle Scholar
  6. 6.
    Singh, J., Joshi, G.D., Sivaswamy, J.: Appearance based object detection in color retinal images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1432–1435 (2008)Google Scholar
  7. 7.
    Niemeijer, M., Abramoff, M.D., Ginneken, B.V.: Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Transactions on Medical Imaging 26, 116–127 (2007)CrossRefGoogle Scholar
  8. 8.
    Sekar, S., Al- Nuaimy, W., Nandi, A.: Automatic localization of optic disc and fovea in retinal fundus images. In: Proceedings of 16th European Signal processing Conference, Lausanne, Switzerland (2008)Google Scholar
  9. 9.
    Sagar, A.V., Balasubramaniam, S., Chandrasekaran, V.: Automatic detection of anatomical structures in digital fundus retinal images. In: Proceedings of IAPR Conference on Machine Vision and Applications, Tokyo, Japan, pp. 483–486 (2007)Google Scholar
  10. 10.
    Chin, K.S., Trucco, E., Tan, L., Wilson, P.J.: Automatic fovea location in retinal images using anatomical priors and vessel density. Pattern Recognition Letters 34, 1152–1158 (2013)CrossRefGoogle Scholar
  11. 11.
    Liang, Z., Wong, D.W.K., Liau, J.: Towards automatic detection of age related macular degeneration in retinal fundus images. In: 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina (2010)Google Scholar
  12. 12.
    MESSIDOR: Digital Retinal Images, http://messidor.crihan Google Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2007)Google Scholar
  14. 14.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2003)Google Scholar
  15. 15.
    Siddalingaswamy, P.C., Gopalakrishna, P.K.: Automatic grading of diabetic maculopathy severity levels. In: Proceedings of IEEE International conference on Systems in Medicine and Biology, pp. 331–334 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ganapatsingh Rajaput
    • 1
  • Bharati Reshmi
    • 1
  1. 1.Department of Computer ScienceGulbarga UniversityGulbargaIndia

Personalised recommendations