Real Time Insignificant Shadow Extraction from Natural Sceneries

  • Subramanyam Muthukumar
  • Ravi Subban
  • Nallaperumal Krishnan
  • P. Pasupathi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 235)


In Computer Vision, shadow free object recognition is a wide phrase covering a range of applications such as human motion capture, video surveillance, traffic monitoring, segmentation and tracking of foreground objects. Unfortunately, shadows in these applications may appear as foreground objects, when in fact they are caused by the interaction between light and objects. The inability to distinguish between foreground objects and shadows can cause malicious problems such as object merging, false segmentation, misclassified as foreground objects and identification failure, all of which significantly affect the performance of detection and tracking systems. However in most situations, it is essential to avoid shadow as it becomes undesired and unwanted part which deteriorates the outcome. Therefore, an effective shadow detection method is necessary for accurate object segmentation. One of the main challenging problems is identifying insignificant shadow from natural images by computing systems. Though many researchers try to deal with these problem using different methodologies, yet it is intriguing problem. This paper deals with the problem of identifying and extracting regions that correspond to shadow from natural scenes. Also, it aims to produce a comprehensive evaluation on the state-of-the-art methods of detecting shadows from natural images.


Object Segmentation Shadow Detection Shadow Extraction Still Image Shadow Identification Shadow Tracking Single Image Object Localization and Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnard, K., Finlayson, G.: Shadow identification using color ratios. In: IS & T/SID, 8th Color Imaging Conference: Color Science, Systems and Appl., pp. 97–101 (2000)Google Scholar
  2. 2.
    Charit, R., et al.: Complex shadow-boundary segmentation using the entry-exit method. In: CVPR, pp. 536–541 (1998)Google Scholar
  3. 3.
    Gevers, T.: Adaptive image segmentation by combining photometric invariant region and edge information. IEEE Trans. Pattern Anal. Machine Intell (PAMI) 24, 848–852 (2002)CrossRefGoogle Scholar
  4. 4.
    Gevers, T., et al.: Color-based object recognition. Pattern Recognition 32, 453–464 (1999)CrossRefGoogle Scholar
  5. 5.
    Salvador, et al.: Shadow identification and classification using invariant color models. In: ICASSP, pp. 1545–1548 (2001)Google Scholar
  6. 6.
    Fieguth, P.W., Wesolkowski, S.: Highlight and shading invariant color image segmentation using simulated annealing. In: EMMCVPR, pp. 314–327 (2001)Google Scholar
  7. 7.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 823–836. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Levine, et al.: Removing shadows. Pattern Recognition Letters 26(3), 251–265 (2005)Google Scholar
  9. 9.
    Horprasert, T., et al.: A Statistical Approach for Rreal-time Robust Background Subtraction and Shadow Detection. In: Proc. ICCV Frame-rate Workshop (1999)Google Scholar
  10. 10.
    Benedek, C., Sziranyi, T.: Bayesian Foreground and Shadow Detection in Uncertain Frame Rate Surveillance Videos. IEEE Trans. Image Processing 17(4), 608–621 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ravi, S., Muthukumar, S., et al.: Image Inpainting Techniques – A Survey And Analysis. In: International Conference on IIT, 978-1- 4673-6203-0/13© IEEE (2013)Google Scholar
  12. 12.
    Mikic, I., et al.: Moving Shadow and Object Detection in Traffic Scenes. In: Proc. IEEE Conf. on Pattern Recognition (ICPR), pp. 321–324 (2000)Google Scholar
  13. 13.
    Fung, G.S.K., et al.: Effective moving cast shadows detection for monocular color image sequences. In: Proc. of 11th Int. Conf. on Image Analysis and Processing, pp. 404–409 (2001)Google Scholar
  14. 14.
    Horprasert, T., et al.: Statistical approach for real-time robust background subtraction and shadow detection. In: Proc. ICCV Frame-rate Workshop (1999)Google Scholar
  15. 15.
    Salvador, E., et al.: Spatio-temporal Shadow Segmentation and Tracking. In: Proc. of Visual Communications and Image Processing (2003)Google Scholar
  16. 16.
    Stauder, J., et al.: Detection of moving cast shadows for object segmentation. IEEE Transactions on MM 1(1), 65–77 (1999)Google Scholar
  17. 17.
    Jiang, C., et al.: Shadow identification. In: IEEE CV and Pattern Recognition, pp. 606–612 (1992)Google Scholar
  18. 18.
    Funka-Lea, G., et al.: Combining color and geometry for the active, visual recognition of shadows. In: Proceedings of IEEE Int. Conference on Computer Vision, pp. 203–209 (June 1995)Google Scholar
  19. 19.
    Funka-Lea, G., Bajcsy, R.: Combining color and geometry for the active, visual recognition of shadows. In: Proc. of IEEE Int. Conf. on Computer Vision, pp. 203–209 (1995)Google Scholar
  20. 20.
    Prati, A., et al.: Detecting moving shadows: Algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 918–923 (2003)Google Scholar
  21. 21.
    Muthukumar, S., et al.: Fuzzy Information based on Image Segmentation by using Shadow Detection. In: IEEE Internal Conference on ICCIC 2010, pp. 1–6 (2010)Google Scholar
  22. 22.
    Muthukumar, S., et al.: Hybrid shadow detection and compensation for plausible visual scene Reconstruction. IJISE 1, 141–146 (2011)Google Scholar
  23. 23.
    Arbel, E., Hel-Or, H.: Shadow removal uing intenity surface and texture anchor point. PAMI 33(6), 1202–1216Google Scholar
  24. 24.
    Sanin, A., Sanderson, C., Lovell, B.C.: Shadow detection: A survey and comparative evaluation of recent methods. Pattern Recognition 45, 1684–1695 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Subramanyam Muthukumar
    • 1
  • Ravi Subban
    • 2
  • Nallaperumal Krishnan
    • 1
  • P. Pasupathi
    • 1
  1. 1.Centre for Information Tech. and Engg.M.S. UniversityTirunelveliIndia
  2. 2.Dept. of Computer SciencePondicherry UniversityPondicherryIndia

Personalised recommendations