Advertisement

Mutagenicity Analysis Based on Rough Set Theory and Formal Concept Analysis

  • Mostafa A. Salama
  • Mohamed Mostafa M. Fouad
  • Nashwa El-Bendary
  • Aboul Ella Otifey Hassanien
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 235)

Abstract

Most of the current Machine Learning applications in cheminformatics are black box applications. Support vector machine and neural networks are the most used classification techniques in prediction of the mutagenic activity of compounds. The problem of these techniques is that the rules/reasons of prediction are unknown. The rules could show the most important features/descrpitors of the compounds and the relations among them. This article proposes a model for generating the rules that governs prediction through the rough set theory. These rules, which based on two levels of selection for the highly discriminating power features, are visualized by lattice generated using the formal concept analysis approach. That is, better understanding of the reasons that leads to the mutagenic activity can be obtained. The resulted lattice shows that lipophilicity, number of nitrogen atoms, and electronegativity are the most important parameters in mutagenicity detection. Moreover, experimental results are compared against previous researches for validating the proposed model.

Keywords

Support Vector Machine Formal Concept Target Class Formal Concept Analysis Feature Selection Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, N.: Chemoinformatics: an introduction for computer scientists. ACM Computing Surveys 41(2), Article 8 (2009)Google Scholar
  2. 2.
    Xu, J., Hagler, A.: Chemoinformatics and Drug Discovery. Molecules 7, 566–600 (2002)CrossRefGoogle Scholar
  3. 3.
    Katritzky, A.R., Pacureanu, L., Dobchev, D., Karelson, M.: QSPR Study of Critical Micelle Concentration of Anionic Surfactants Using Computational Molecular Descriptors. Journal of Chemical Information and Modeling 47(3), 782–793 (2007)CrossRefGoogle Scholar
  4. 4.
    Liu, K., Feng, J., Young, S.S.: PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. Journal of Chemical Information and Modeling 45(2), 515–522 (2005)CrossRefGoogle Scholar
  5. 5.
    Salama, M.A., El-Bendary, N., Hassanien, A.E., Revett, K., Fahmy, A.A.: Interval based attribute evaluation algorithm. In: Proc. The Federated Conference on Computer Science and Information Systems, FedCSIS 2011, Szczecin, Poland, pp. 153–156 (2011)Google Scholar
  6. 6.
    Thabtah, F., Eljinini, M., Zamzeer, M., Hadi, W.: Naieve Bayesian based on Chi Square to Categorize Arabic Data. In: Proc. The 11th International Business Information Management Association Conference, IBIMA, on Innovation and Knowledge Management in Twin Track Economies, Cairo, Egypt, pp. 930–935 (2009)Google Scholar
  7. 7.
    Eid, H.F., Salama, M.A., Hassanien, A.E., Kim, T.-H.: Bi-Layer Behavioral-Based Feature Selection Approach for Network Intrusion Classification. In: Kim, T.-H., Adeli, H., Fang, W.-C., Garca-Villalba, L.J., Arnett, K.P., Khan, M.K. (eds.) Proc. Security Technology - International Conference, SecTech 2011, Part of the Future Generation Information Technology Conference, FGIT 2011, Jeju Island, Korea, pp. 195–203 (2011)Google Scholar
  8. 8.
    Al-Qaheri, H., Hassanien, A.E., Abraham, A.: A Generic Scheme for Generating Prediction Rules Using Rough Sets. In: Abraham, A., Falcan, R., Bello, R. (eds.) Rough Set Theory: A True Landmark in Data Analysis. SCI, vol. 174, pp. 163–186. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Motameny, S., Versmold, B., Schmutzler, R.: Formal Concept Analysis for the Identification of Combinatorial Biomarkers in Breast Cancer. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 229–240. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kazius, J., McGuire, R., Bursi, R.: Derivation and Validation of Toxicophores for Mutagenicity Prediction. J. Med. Chem. 48(1), 312–320 (2005)CrossRefGoogle Scholar
  11. 11.
    ChemAxon Software, http://www.chemaxon.com/ (last accessed: January 2013)
  12. 12.
    Kuznetsov, S.O.: Machine Learning and Formal Concept Analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    WEKA: Waikato Environment for Knowledge Analysis, version 3.5.9, http://www.cs.waikato.ac.nz/ml/weka/(last accessed: January 2013)
  14. 14.
    Du, Q., Mezey, P.G., Chou, K.C.: Heuristic Molecular Lipophilicity Potential (HMLP): A 2D-QSAR Study to LADH of Molecular Family Pyrazole and Derivatives. Journal of Computational Chemistry 26(5), 461–470 (2005)CrossRefGoogle Scholar
  15. 15.
    Bhattacharjee, A.K., Kyle, D.E., Vennerstrom, J.L., Milhous, W.K.: A 3D QSAR pharmacophore model and quantum chemical structure–activity analysis of chloroquine(CQ)-resistance reversal. Journal of Chemical Information and Computer Sciences 42(5), 1212–1220 (2002)CrossRefGoogle Scholar
  16. 16.
    Rosenkranz, H.S., Klopman, G.: Relationships between electronegativity and genotoxicity. Mutation Research 328(2), 215–227 (1995)CrossRefGoogle Scholar
  17. 17.
    Yamada, K., Hakura, A., Kato, T.A., Mizutani, T., Saeki, K.: Nitrogen-substitution effects on the mutagenicity and cytochrome P450 isoform-selectivity of chrysene analogs. Mutat Res 586(1), 87–95 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mostafa A. Salama
    • 1
  • Mohamed Mostafa M. Fouad
    • 2
  • Nashwa El-Bendary
    • 2
  • Aboul Ella Otifey Hassanien
    • 3
  1. 1.Scientific Research Group in Egypt (SRGE)British University in Egypt (BUE), Cairo - EgyptEl SheroukEgypt
  2. 2.Scientific Research Group in Egypt (SRGE)Arab Academy for Science, Technology, and Maritime Transport, Cairo - EgyptQism El-MontazaEgypt
  3. 3.Information Technology Dept., Faculty of Computers and Information, Scientific Research Group in Egypt (SRGE)Cairo UniversityCairoEgypt

Personalised recommendations