Advertisement

Some Constructions of \(\mathcal{T}\)-Direct Codes over GF(2n)

  • R. S. Raja Durai
  • Meenakshi Devi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 235)

Abstract

The class of \(\mathcal{T}\)-Direct codes are an extension to the class of linear codes with complementary duals. In this paper, a construction procedure that constructs an n 2-Direct code from an n-Direct code is described. Further, the construction procedure is employed recursively to construct \(n^{2^{m+1}}\)-Direct codes for m ≥ 0. Finally, \(\mathcal{T}^{2}\)-Direct codes are obtained from arbitrary \(\mathcal{T}\)-Direct codes with constituent codes of variable rates. The proposed construction procedure, when employed on an existing \({\mathcal{T}}\)-Direct code, in fact increases the number of constituent codes (users), thereby supporting more users in a multi-user environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gabidulin, E.M.: Theory of codes with maximum rank distance. Problems in Information Transmission 21, 1–12 (1985)MATHGoogle Scholar
  2. 2.
    Massey, J.L.: Linear codes with complementary duals. Discrete Mathematics 106-107, 337–342 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Urbanke, R., Rimoldi, B.: Coding for the F-Adder Channel: Two applications for Reed-Solomon codes. In: Proceedings of IEEE International Symposium on Information Theory, San Antonio, p. 85 (1993)Google Scholar
  4. 4.
    Rimoldi, B.: Coding for the Guassian multiple access channel: An algebraic approach. In: Proceedings of International Symposium on Information Theory, Austin, TX (1993)Google Scholar
  5. 5.
    Vasantha, W.B., Raja Durai, R.S.: \(\mathcal{T}\)-Direct codes: An application to \(\mathcal{T}\)-user BAC. In: Proceedings of the IEEE Information Theory Workshop, Bangalore, India, p. 214 (2002)Google Scholar
  6. 6.
    Vasantha, W.B., Raja Durai, R.S.: Some results on \(\mathcal{T}\)-Direct codes. In: Proceedings of the 3rd Asia-Europe Workshop on Information Theory, Kamogawa, Chiba, Japan, pp. 43–44 (2003)Google Scholar
  7. 7.
    Raja Durai, R.S., Devi, M.: Construction of (\(\mathcal{N}+\mathcal{M}\))-Direct codes in \(GF(2^{\mathcal{N}})\). In: Proceedings of World Congress on Information and Communication Technologies, Mumbai, India, pp. 770–775 (2011)Google Scholar
  8. 8.
    Raja Durai, R.S., Devi, M.: On the class of \(\mathcal{T}\)-Direct codes over GF(2N). International Journal of Computer Information Systems and Industrial Management Applications 5, 589–596 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. S. Raja Durai
    • 1
  • Meenakshi Devi
    • 2
  1. 1.Department of MathematicsJaypee University of Information Technology WaknaghatSolanIndia
  2. 2.Department of MathematicsBahra UniversitySolanIndia

Personalised recommendations