The Effects of Memory on Linear Response and Entropy Production

  • Dario VillamainaEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter the Langevin equation with memory is analyzed in both equilibrium and non equilibrium setups. Non-Markovian equation can be mapped in a Markovian one by increasing enough the number of degrees of freedom. This procedure is not just a simple mathematical trick, on the contrary the relative coupling between different variables is relevant for the correct prediction of the response. Moreover such a coupling is proportional to the entropy production rate. By concluding, we show how the mapping from Markovian to non-Markovian dynamics is equivalent to a projection operation and it carries a loss of information that can be detected by entropy production.


Entropy Production Auxiliary Variable Langevin Equation Detailed Balance Path Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonaldi, M., et al.: Nonequilibrium steady-state fluctuations in actively cooled resonators. Phys. Rev. Lett 103, 10601 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Bonetto, F., Gallavotti, G., Giuliani, A., Zamponi, F.: Chaotic hypothesis, fluctuation theorem, singularities. J. Stat. Phys. 123, 39 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Chetrite, R., Gawędzki, K.: Eulerian and lagrangian pictures of non-equilibrium diffusions. J. Stat. Phys. 137, 890 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Cugliandolo, L.F., Kurchan, J.: A scenario for the dynamics in the small entropy production limit. J. Phys. Soc. Jpn 69, 247 (2000)Google Scholar
  5. 5.
    De Gregorio, P., Rondoni, L., Bonaldi, M., Conti, L.: Harmonic damped oscillators with feedback: a langevin study. J. Stat. Mech: Theory Exp 2009, P10016 (2009)CrossRefGoogle Scholar
  6. 6.
    Evans, D., Searles, D., Rondoni, L.: Application of the gallavotti-cohen fluctuation relation to thermostatted steady states near equilibrium. Phys. Rev. E 71, 056120 (2005)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gomez-Solano, J., Petrosyan, A., Ciliberto, S., Maes, C.: Fluctuations and response in a non-equilibrium micron-sized system. J. Stat. Mech: Theory Exp 2011, P01008 (2011)CrossRefGoogle Scholar
  8. 8.
    Hänggi, P. : Path integral solution for nonlinear generalized langevin equations. In: Proceedings of Path Integrals for meV to MeV: Tutzing’92, p.289 (1993)Google Scholar
  9. 9.
    Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat 22, 79 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kumaran, V.: Temperature of a granular material “fluidized” by external vibrations. Phys. Rev. E 57, 5660 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Lebowitz, J.L., Spohn, H.: A gallavotti-cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Machlup, S., Onsager, L.: Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 91, 1512 (1953)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Puglisi, A., Rondoni, L., Vulpiani, A. : Relevance of initial and final conditions for the fluctuation relation in markov processes. J. Stat. Mech. P08010 (2006)Google Scholar
  15. 15.
    Puglisi, A., Villamaina, D.: Irreversible effects of memory. Europhys. Lett. 88, 30004 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin (1989)Google Scholar
  17. 17.
    Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Speck, T., Seifert, U.: Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    van Zon, R., Cohen, E.G.D.: Extension of the fluctuation theorem. Phys. Rev. Lett. 91, 110601 (2003)CrossRefGoogle Scholar
  20. 20.
    van Zon, R., Cohen, E.G.D.: Stationary and transient work-fluctuation theorems for a dragged Brownian particle. Phys. Rev. E 67, 046102 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Villamaina, D., Baldassarri, A., Puglisi, A., Vulpiani, A. Fluctuation dissipation relation: how to compare correlation functions and responses?. J. Stat. Mech. P07024 (2009)Google Scholar
  22. 22.
    Zamponi, F., Bonetto, F., Cugliandolo, L. F., and Kurchan, J. A fluctuation theorem for non-equilibrium relaxational systems driven by external forces. J. Stat. Mech. P09013 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LPTMSUniversité Paris Sud and CNRSOrsay CedexFrance

Personalised recommendations