Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 603 Accesses

Abstract

In this chapter a brief collection of the results present in literature and used in this work is described. We starts with a derivation of the Langevin equation in a way that makes clear the assumptions on the basis of equilibrium dynamics. Then, generalized response relations are presented and the role of entropy production is discussed. Since a large part of this work regards the study of granular gases, the second part of the chapter is entirely devoted to them, paying attention to the still open problems in dense regimes. This is not a chapter of a review article, and for this reason it could appear incomplete. However, it must be seen as an occasion to present the common ground where there are the basis of our research, and it proposes some questions which are developed and, at least partially, solved in the rest of the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this thesis we always measure the temperature in scales of energy, namely we set the Boltzmann constant \(k_{B}\) equal to one.

  2. 2.

    We will omit the expression “of the first kind” When the kind is not specified we always refer to this relation.

  3. 3.

    We consider a numerable set of trajectories for simplicity of notation.

  4. 4.

    We put \(\rho \equiv \rho _{inv}\) for simplicity.

  5. 5.

    \(\Theta \) is the Heavyside step function.

  6. 6.

    A similar definition is often introduced also in the frequency domain conjugated to the variable \(t\) [27].

  7. 7.

    The index \(i\) has been removed for simplicity.

  8. 8.

    The second order term trivially vanishes for functions of the form \(g(x)=\ln [f(x)/f(-x)]\).

References

  1. Andrieux, D., Gaspard, P.: Fluctuation theorem for currents and schnakenberg network theory. J. Stat. Phys. 127, 107 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Astumian, R.D.: The unreasonable effectiveness of equilibrium theory for interpreting nonequilibrium experiments. Am. J. Phys 74, 683 (2006)

    Article  Google Scholar 

  3. Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for markov dynamics, i: jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Baldassarri, A., Barrat, A., D’Anna, G., Loreto, V., Mayor, P., Puglisi, A.: What is the temperature of a granular medium? J. Phys. Condens. Matter 17, S2405 (2005)

    Article  ADS  Google Scholar 

  6. Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Granular Matter 4, 57 (2002)

    Article  MATH  Google Scholar 

  7. Barrat, A., Loreto, V., Puglisi, A.: Temperature probes in binary granular gases. Phys. A. 334, 513 (2004)

    Article  Google Scholar 

  8. Berthier, L., Barrat, J.L.: Shearing a glassy material: numerical tests of nonequilibrium mode-coupling approaches and experimental proposals. Phys. Rev. Lett. 89, 095702 (2002)

    Article  ADS  Google Scholar 

  9. Boffetta, G., Lacorata, G., Musacchio, S., Vulpiani, A.: Relaxation of finite perturbations: Beyond the fluctuation-response relation. Chaos 13, 806 (2003)

    Article  ADS  Google Scholar 

  10. Boksenbojm, E., Wynants, B., Jarzynski, C.: Nonequilibrium thermodynamics at the microscale: work relations and the second law. Stat. Mech. Appl. Phys A 389, 4406 (2010)

    Google Scholar 

  11. Bouchaud, J.P., Cugliandolo, L.F., Kurchan, J., Mezard. M.: Spin Glasses and Random Fields. World Scientific, singapore (1998)

    Google Scholar 

  12. Bouchaud, J., Dean, D.: Aging on parisi’s tree. J. Phy. I(5), 265 (1995)

    ADS  Google Scholar 

  13. Brilliantov, N.K., Poschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Google Scholar 

  14. Brilliantov, N.V., Poschel, T.: Self-diffusion in granular gases: green-kubo versus chapman-enskog. Chaos 15, 026108 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Van den Broeck, C., Kawai, R., Meurs, P.: Microscopic analysis of a thermal brownian motor. Phys. Rev. Lett. 93, 90601 (2004)

    Article  Google Scholar 

  16. Brown, R.: A brief account of microscopical observations made.. on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. Ser. 2 4, 161 (1828)

    Google Scholar 

  17. Brown, R.: Additional remarks on active molecules. Phil. Mag Ser. 2 6, 161 (1829)

    Google Scholar 

  18. Brown’s microscopical observations on the particles of bodies. Philos. Mag. N. S., 8, 296 (1830)

    Google Scholar 

  19. Castellani, T., Cavagna, A.: Spin-glass theory for pedestrians. J. Stat. Mech. Theor. Exp. 2005, P05012 (2005)

    Article  MathSciNet  Google Scholar 

  20. Cavagna, A.: Supercooled liquids for pedestrians. Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  21. Chapman, S., Cowling, T.: The mathematical theory of non-uniform gases. The mathematical theory of non-uniform gases, vol. 1. Cambridge University Press, Cambridge (1991).

    Google Scholar 

  22. Corberi, F., Lippiello, E., Sarracino, A., Zannetti, M.: Fluctuation-dissipation relations and field-free algorithms for the computation of response functions. Phys. Rev. E 81, 011124 (2010)

    Article  ADS  Google Scholar 

  23. Costantini, G., Marconi, U., Puglisi, A.: Granular brownian ratchet model. Phys. Rev. E 75, 061124 (2007)

    Article  ADS  Google Scholar 

  24. Crisanti, A., Ritort, F.: Violation of the fluctuation-dissipation theorem in glassy systems: basic notions and the numerical evidence. J. Phys. A 36, R181 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Cugliandolo, L.: Disordered systems. Lecture notes, Cargese (2011)

    Google Scholar 

  26. Cugliandolo, L.F.: Weak-ergodicity breaking in mean-field spin-glass models. Phil. Mag. 71, 501–514 (1995)

    Article  Google Scholar 

  27. Cugliandolo, L., Kurchan, J., Peliti, L.: Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898 (1997)

    Article  ADS  Google Scholar 

  28. Dunkel, J., Hänggi, P.: Relativistic brownian motion. Phys. Rep. 471, 1 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Einstein, A.: On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. d. Phys. 17, 549 (1905)

    Article  ADS  MATH  Google Scholar 

  30. Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645 (1994)

    Article  ADS  Google Scholar 

  31. Evans, D.J., Searles, D.J.: The fluctuation theorem. Adv. Phys. 52, 1529 (2002)

    Article  ADS  Google Scholar 

  32. Falcioni, M., Isola, S., Vulpiani, A.: Correlation functions and relaxation properties in chaotic dynamics and statistical mechanics. Phys. Lett. A 144, 341 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  33. Feitosa, K., Menon, N.: Fluidized granular medium as an instance of the fluctuation theorem. Phys. Rev. Lett. 92, 164301 (2004)

    Article  ADS  Google Scholar 

  34. Feynman, R., Leighton, R., Sands, M., et al.: The Feynman lectures on physics, vol. 2. Addison-Wesley Reading, MA (1964)

    Google Scholar 

  35. Fielding, S., Sollich, P.: Observable dependence of fluctuation-dissipation relations and effective temperatures. Phys. Rev. Lett. 88, 50603 (2002)

    Article  ADS  Google Scholar 

  36. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Goldhirsch, I.: Rapid granular flows. Ann. Rev. Fluid Mech. 35, 267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  38. Hänggi, P.: Generalized langevin equations: a useful tool for the perplexed modeller of nonequilibrium fluctuations? Stochastic, dynamics, p. 15. Springer, Berlin (1997)

    Google Scholar 

  39. Hänggi, P., Ingold, G.: Fundamental aspects of quantum brownian motion. Chaos: an Interdisciplinary. J. Nonlinear Sci. 15, 026105 (2005)

    Google Scholar 

  40. Hänggi, P., Marchesoni, F., Nori, F.: Brownian motors. Ann. Phys. 14, 51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hänggi, P., Marchesoni, F.: Artificial brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  42. Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  43. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523 (1992)

    Article  ADS  Google Scholar 

  44. Janssen, H. Versuche uber getreidedruck in silozellen. z. ver deut. Ing. 39 1045 (1895)

    Google Scholar 

  45. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  46. Jarzynski, C.: Nonequilibrium work relations: foundations and applications. Eur. Phys. J. B Condens. Matter Complex Syst. 64, 331 (2008)

    Article  MathSciNet  Google Scholar 

  47. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435 (1999)

    Article  ADS  Google Scholar 

  48. Kawai, R., Parrondo, J., den Broeck, C.: Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 80602 (2007)

    Article  ADS  Google Scholar 

  49. Kob, W., Barrat, J., Sciortino, F., Tartaglia, P.: Aging in a simple glass former. J. Phys. Condens. Matter 12, 6385 (2000)

    Article  ADS  Google Scholar 

  50. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  51. Kubo, R.: Brownian motion and nonequilibrium statistical mechanics. Science 32, 2022 (1986)

    Google Scholar 

  52. Kubo, R., Toda, M., Hashitsume, N.: Statistical physics II Nonequilibrium Stastical Mechanics. Springer, Berlin (1991)

    Book  Google Scholar 

  53. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kumaran, V.: Temperature of a granular material “fluidized” by external vibrations. Phys. Rev. E 57, 5660 (1998)

    Article  ADS  Google Scholar 

  55. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Kurchan, J.: Non-equilibrium work relations. J. Stat. Mech. Theor. Exp. 2007, P07005 (2007)

    Article  Google Scholar 

  57. Lacorata, G., Puglisi, A., Vulpiani, A.: On the fluctuation-response relation in geophysical systems. Int. J. Mod. Phys. B 23, 5515 (2009)

    Article  ADS  MATH  Google Scholar 

  58. Langevin, P.: Sur la theorie du mouvement brownien. C. R. Acad. Sci. (Paris) 146 530 (1908) (Translated in. Am. J. Phys. 65, 1079 (1997))

    Google Scholar 

  59. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Di Leonardo, R., et al.: Bacterial ratchet motors. Proc. Nat. Acad. Sci. 107, 9541 (2010)

    Article  ADS  Google Scholar 

  61. Leuzzi, L., Nieuwenhuizen, T.M.: Thermodynamics of the Glassy State. Taylor & Francis, New York (2007)

    Google Scholar 

  62. Leuzzi, L.: A stroll among effective temperatures in aging systems: limits and perspectives. J. Non-Cryst. Solids 355, 686 (2009)

    Article  ADS  Google Scholar 

  63. Lippiello, E., Corberi, F., Zannetti, M.: Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys. Rev. E 71, 036104 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  64. Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461, 111 (2008)

    Article  ADS  Google Scholar 

  65. Van Der Meer, D., Reimann, P., Van Der Weele, K., Lohse, D.: Spontaneous ratchet effect in a granular gas. Phys. Rev. Lett. 92, 184301 (2004)

    Article  ADS  Google Scholar 

  66. Mori, H.: Transport, collective motion, and brownian motion. Progress Theoret. Phys. 33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  67. Nelson, E. Dynamical theories of Brownian motion. Citeseer 17 (1967)

    Google Scholar 

  68. Nicodemi, M.: Dynamical response functions in models of vibrated granular media. Phys. Rev. Lett. 82, 3734 (1999)

    Article  ADS  Google Scholar 

  69. van Noije, T.P.C., Ernst, M.H., Trizac, E., Pagonabarraga, I.: Randomly driven granular fluids: large-scale structure. Phys. Rev. E 59, 4326 (1999)

    Article  ADS  Google Scholar 

  70. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  71. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Perez-Espigares, C., Kolton, A. B., Kurchan, J.: An infinite family of second law-like inequalities. Phys. Rev. 85(3), 031135 (2012)

    Google Scholar 

  73. Perrin, J.: Les Atomes. Alcan, Paris (1913)

    MATH  Google Scholar 

  74. Puglisi, A., Baldassarri, A., Vulpiani, A.: Violations of the einstein relation in granular fluids: the role of correlations. J. Stat. Mech. P08016 (2007)

    Google Scholar 

  75. Puglisi, A.: Granular fluids, a short walkthrough (2010)

    Google Scholar 

  76. Puglisi, A., Loreto, V., Marconi, U.M.B., Petri, A., Vulpiani, A.: Clustering and non-gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848 (1998)

    Article  ADS  Google Scholar 

  77. Puglisi, A., Loreto, V., Marconi, U.M.B., Vulpiani, A.: A kinetic approach to granular gases. Phys. Rev. E 59, 5582 (1999)

    Article  ADS  Google Scholar 

  78. Puglisi, A., Baldassarri, A., Loreto, V.: Fluctuation-dissipation relations in driven granular gases. Phys. Rev. E 66, 061305 (2002)

    Article  ADS  Google Scholar 

  79. Puglisi, A., Visco, P., Barrat, A., Trizac, E., van Wijland, F.: Fluctuations of internal energy flow in a vibrated granular gas. Phys. Rev. Lett. 95, 110202 (2005)

    Article  ADS  Google Scholar 

  80. Seifert, U., Speck, T.: Fluctuation-dissipation theorem in nonequilibrium steady states. EPL (Europhys. Lett.) 89, 10007 (2010)

    Article  ADS  Google Scholar 

  81. Smoluchowski, M.: Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. d. Phys. 21, 756 (1906)

    Article  MATH  Google Scholar 

  82. Smoluchowski, M.: Experimentell nachweisbare, der üblichen thermodynamik widersprechende molekularphänomene. Physik. Zeitschr 13, 1069 (1912)

    MATH  Google Scholar 

  83. Struik, L.: Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  84. Villamaina, D., Puglisi, A., Vulpiani, A.: The fluctuation-dissipation relation in sub-diffusive systems: the case of granular single-file diffusion. J. Stat. Mech. L10001 (2008)

    Google Scholar 

  85. Williams, D.R.M., MacKintosh, F.C.: Driven granular media in one dimension: correlations and equation of state. Phys. Rev. E 54, R9 (1996)

    Article  ADS  Google Scholar 

  86. Zamponi, F., Bonetto, F., Cugliandolo, L. F., Kurchan, J.: A fluctuation theorem for non-equilibrium relaxational systems driven by external forces. J. Stat. Mech. P09013 (2005)

    Google Scholar 

  87. Zamponi, F.: Is it possible to experimentally verify the fluctuation relation? a review of theoretical motivations and numerical evidence. J. Stat. Mech. P02008 (2007)

    Google Scholar 

  88. Zwangzig, R.: Nonequilibrium statistical mechanics. Oxford University Press, Oxford (2001)

    Google Scholar 

  89. Zwanzig, R.: Time-correlation functions and transport coefficients in statistical mechanics. Ann. Rev. Phys. Chem. 16, 67 (1965)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Villamaina .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villamaina, D. (2014). Non-Equilibrium Steady States. In: Transport Properties in Non-Equilibrium and Anomalous Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01772-3_2

Download citation

Publish with us

Policies and ethics