Overview of Theoretical Approaches to the Analysis of Light Scattering

  • Kirill KulikovEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


We propose methods of light scattering for the quantitative study of the optical characteristics of the tissue, and the results of theoretical and experimental studies of photon transport in biological tissues.


Stationary theory of radiative transfer Diffusion approximation Kubelka-Munk theory Monte-Carlo method 


  1. 1.
    G Muller et al., (eds.), Medical Optical Tomography: Functional Imaging and Monitoring. (SPIE, Bellinhgham, 1993) IS11Google Scholar
  2. 2.
    H. Rinneeberg, The Inverse Problem. (Akademic Verlag, Berlin, 1995)Google Scholar
  3. 3.
    D.E. Freund, R.A. Farrell, Effects of fibril orientations on light scattering in the cornea. J. Opt. Soc. Am. A. 1986, 3(N11), 1970–1982Google Scholar
  4. 4.
    Special issue on lazers in biology and medicine. J. Quantum Electron. 26, 2146 (1990)Google Scholar
  5. 5.
    A.J. Welch, M.C.van Gemert (eds.), Tissue Optics. (American Institute of Physics, New York, 1992)Google Scholar
  6. 6.
    M. Motamedi (ed.), Special issue on photon migration in tissue and biomedical applications of lasers. Appl. Opt. 31, 367 (1993)Google Scholar
  7. 7.
    G.R. Ivanitskii, A.S. Kunisky, Study of the Microstructure Objects by means of Coherent Optics. (Moscow, 1981)Google Scholar
  8. 8.
    V.V. Lopatin, F.Ya. Sidko, The polarization characteristics of suspensions of biological particles. (Novosibirsk, 1991)Google Scholar
  9. 9.
    A. Brunsting, P.F. Mullaney, Differential light scattering from spherical mammalian cells. Biophys. J. 14(6), 439–453 (1974)Google Scholar
  10. 10.
    P.F. Mullaney, R.J. Fiel, Cellular stucture as revealed by visible light scattering: studies on suspensions of red blood cell ghost. Appl. Opt. 15(2), 301–311 (1976)Google Scholar
  11. 11.
    A. Brunsting, P.F. Mullaney, Light scattering from coated spheres: model for biological cells. Appl. Opt. 11(3), 675–680 (1972)Google Scholar
  12. 12.
    A. Brunsting, P.F. Mullaney, Differential light scattering: possible method of mammalian cell indentification. J. Coll. Interf. Sci. 39(3), 492–496 (1972)Google Scholar
  13. 13.
    P. Latimer, Light scattering by homogeneous sphere with radial projections. Appl. Opt. 23(3), 442–447 (1984)Google Scholar
  14. 14.
    P. Latimer, Light scattering, data inversion, and information theory. J. Coll. Interf. Sci. 39(3), 497–503 (1972)Google Scholar
  15. 15.
    P. Latimer, Light scattering and absorpition as method of studying cell population parameters. Ann. Rev. Biophys. Bioeng. 11(1), 129–150 (1982)Google Scholar
  16. 16.
    P. Latimer, D.M. Moore, F.D. Bryant, Changes in total light scattering and absorpition caused by changes in particle conformation. J. Theor. Biol. 21(N2), 348–367 (1968)Google Scholar
  17. 17.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 1 (Single scattering and transport theory, Moscow, 1981)Google Scholar
  18. 18.
    F.A. Duck, Physical Properties of Tissue. (Academic Press, San-Diego, 1990)Google Scholar
  19. 19.
    M.H. Niemz, Laser—Tissue Interactions: Fundamentals and Applications. (Springer, Berlin, 1996)Google Scholar
  20. 20.
    W.M. Star, Diffusion Theory of Light Transport, in ed. by A.J. Welch, M.J.C. van Gemert Optical-Thermal Response of Laser-Irradiated Tissue, (Plenum, New York, 1995) pp. 131–206Google Scholar
  21. 21.
    J.B. Fishkin, E. Gratton, Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge. J. Opt. Soc. Am. A. 10(1), 127–140 (1993)Google Scholar
  22. 22.
    V.V. Tuchin, Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Tutorial Texts in Optical Enginnring, Tissue Optics, (SPIE, Bellingham, 2000)Google Scholar
  23. 23.
    S.A. Tereshchenko, Methods of Computer Tomography. (Fizmatlit, Moscow, 2004)Google Scholar
  24. 24.
    A.H. Hielscher, R.E. Alcouffe, Non-diffusive photon migration in homogeneous and heteregenous tissues. SPIE Proc. 2925, 22–30 (1996)Google Scholar
  25. 25.
    G. Yoon, A.J. Welch, M. Motamedi, M.G. Van Gemert, Development and Application of three dimensional light. IEEE J. Quantum Electr 23(10), 1721–1733 (1987)Google Scholar
  26. 26.
    I.N. Minin The Theory of Radiative Transfer in the Atmosphere of Planets. (Nauka, Moscow, 1988)Google Scholar
  27. 27.
    H. Rinneeberg, The Inverse Problem. (Akademic Verlag, Berlin, 1995)Google Scholar
  28. 28.
    A. Ishimaru, Theory and application of wave propagation and scattering in random media. Proc. IEEE. 65(7), 1030–1060 (1977)Google Scholar
  29. 29.
    M.U. Vera D.J. Durian, Angular distribution of diffusely transmitted light. Phys. Rev. E 53, 3215 (1996)Google Scholar
  30. 30.
    R.C. Haskell et al., Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A. 11, 2727–2741 (1994)Google Scholar
  31. 31.
    M. Bassani et al. Independence of the diffusion coefficient from absorption: experimental and numerical evidence. Opt. Lett. 22(N12), 853–855 (1997)Google Scholar
  32. 32.
    M.J.C. Van Gemert, A.J. Welch, J.W. Pickering, O.T. Tan, G.H.M. Gijsbers, Wavelengths for laser treatment of port wine stains and telangiectasia. Lasers Surg. Med. 16(2), 147–155 (1995)Google Scholar
  33. 33.
    S.A. Prahl, M.J.C. van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-double method. Appl. opt. 32, 559–568 (1993)Google Scholar
  34. 34.
    M.J.C. Van Germert, J.S. Nelson, T.E. Milner et al., Non-invasive determination of port wine stain anatomy and physiology for optimal laser treatment, strategies. Phys. Med. Biol. 42, 937–949 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Higher MathematicsSt. Petersburg Polytechnical State UniversitySt. PetersburgRussia

Personalised recommendations