Advertisement

Simulation of the Thermal Processes

  • Kirill Kulikov
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

We propose the mathematical model for calculation of the hyperthymia of a multilayer biological structure under the action of laser radiation. For the case in vivo, the dependences of the temperature field on the refractive index and absorption coefficient of the biological tissue under study (epidermis, the upper derma layer, the lower derma layer, blood and its corpuscles) are determined. The obtained quantitative estimates can be used to predict the changes in the optical properties of the biological structure that are caused by the biophysical, biochemical, and physiological processes during the action of a nonpolarized monochromatic radiation flow on the structure surface.

Keywords

Biological tissues Thermophysical characteristics Heat conduction equation Arrhenius law 

References

  1. 1.
    Y.N. Scherbakov, A.N. Yakunin, I.V. Yaroslavsky, V.V. Tuchin, Modeling of thermal processes in the interaction of laser radiation with noncoagulating multilayer biological tissue. Part 1. Opt. Spectrosc. 76(5), 845–850 (1994)Google Scholar
  2. 2.
    S.A. Yu, I.V. Krasnikov, Calculation of temperature fields arising from the interaction of laser radiation with multilayer biological material. J. Opt. Technol. 73(3), 31–34 (2006)Google Scholar
  3. 3.
    M. Motamedi, S. Rastegar, G.L.C. Le, A.J. Welch, Light and temperature distribution in laser irradiated tissue: The influence of anisotropic scattering and refractive index. Appl. Opt. 28(2), 2230–2237 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    I.V. Meglinski, Simulation of the reflectance spectra of optical radiation from a randomly inhomogeneous multilayer strongly scattering and absorbing light environments using the Monte Carlo. Quantum Electron. 31(12), 1101–1107 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S.D. Pletnev, Lasers in Clinical Medicin (Meditsina, Moscow, 1996), p. 427Google Scholar
  6. 6.
    K.G. Kulikov, The modeling of the temperature field, formed inside multilayer biological tissue under the affect of the laser emission, in Proceedings of SPIE, vol. 7373 (2009)Google Scholar
  7. 7.
    K.G. Kulikov, Simulation of the thermal processes induced by action of laser radiation on organic media. Tech. Phys. 54(N2), 259–267 (2009)CrossRefGoogle Scholar
  8. 8.
    M.Z. Smirnov, A.E. Pushkareva, The influence of blood flow to the laser heating of the skin. Opt. Spectrosc. 99(5), 875–878 (2005)CrossRefGoogle Scholar
  9. 9.
    A.A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989). Dekker, New York, 2001Google Scholar
  10. 10.
    V.V. Tuchin, Lasers and Fiber Optics in Biomedical Studies (Saratovsky University, Saratov, 1998)Google Scholar
  11. 11.
    F.S. Barnes, Biological damage resulting from thermal pulses, in Laser Applications in Medicine and Biology, ed. by M.L.N.Y. Wolbarsht (Plenum Press, New York, 1974)Google Scholar
  12. 12.
    G.I. Zheltov, V.N. Glazkov, A.I. Kirkovsky, A.S. Podol’tsev, Mathematical models of laser-tissue interactions for treatment and diagnosis in ophthalmology. Laser Appl. Life Sci. Part 2 Proc. SPIE 1403, 752 (1990)Google Scholar
  13. 13.
    A. Podol’tsev, G.I. Zheltov, The impact IR radiation on the cornea of the eye. Quantum Electron. 16, 2136 (1989)Google Scholar
  14. 14.
    R. Agah, J.A. Pearce, A.J. Welch, M. Motamedi, Rate process model for arterial tissue thermal damage: Implications on vessel photocoagulation. Lasers Surg. Med. 5, 176 (1994)CrossRefGoogle Scholar
  15. 15.
    G.I. Zheltov, L.G. Astafeva, A. Carsten, Laser blocking blood flow: The physical model. Opt. Spectrosc. 102(3), 518–523 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Higher MathematicsSt. Petersburg Polytechnical State UnivSt. PetersburgRussia

Personalised recommendations