Advertisement

Intervals of Marks

Chapter
  • 1.3k Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2091)

Abstract

Intervals, whether classical or modal, pretend to represent numerical information in a coherent way and, for that, one of the main problems is rounding. Indeed, using a digital scale with a finite number of digits, computations will have to be rounded in a convenient way. Working with non-interval numeric values, the best rounding is that which guarantees that the obtained value is “the closest” to the theoretical solution. Working with modal intervals the rule of rounding cannot be the same. Traditionally, the rounding process has been always a nuisance inherent in interval computation, but necessary to keep the semantic interpretations that these computations provide.

Keywords

Semantic Function Unite Extension Interval Extension Modal Interval Real Continuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 46.
    L. Jorba, Intervals de Marques (in catalan). Ph.D. thesis, Facultad de Matemáticas, Universidad de Barcelona, Spain, 2003Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Informática Matemática Aplicada y Estadística Escola Politecnica SuperiorUniversity of GironaGironaSpain
  2. 2.Enginyeria Elèctrica Electrònica i Automàtica Escola Politecnica SuperiorUniversity of GironaGironaSpain
  3. 3.Imperial College LondonLondonUK
  4. 4.Matemática Económica Financiera y Actuarial Facultad de Economia y EmpresaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations