Skip to main content

Some Related Problems

  • Chapter
  • First Online:
Modal Interval Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2091))

  • 1422 Accesses

Abstract

This chapter presents some applications of modal intervals to practical problems in different fields. First, the minimax problem, tackled from the definitions of the modal *- and **-semantic extensions of a continuous function. Many real life problems of practical importance can be modelled as continuous minimax optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Amouzegar, A global optimization method for nonlinear bilevel programming problems. IEEE Trans. Syst. Man Cybern. Part B 29, 771–777 (1999)

    Article  Google Scholar 

  2. J. Armengol, J. Vehí, L. Travé-Massuyès, M.Á. Sainz, Application of modal intervals to the generation of error-bounded envelopes. Reliable Comput. 7(2), 171–185 (2001)

    Article  MATH  Google Scholar 

  3. J. Armengol, J. Vehí, L. Travé-Massuyès, M.Á. Sainz, Application of multiple sliding time windows to fault detection based on interval models, in 12th International Workshop on Principles of Diagnosis DX 2001. San Sicario, Italy, ed. by Sh. McIlraith, D. Theseider Dupré (2001), pp. 9–16

    Google Scholar 

  4. P. Basso, Optimal search for the global maximum of functions with bounded seminorm. SIAM J. Numer. Anal. 9, 888–903 (1985)

    Article  MathSciNet  Google Scholar 

  5. E. Baumann, Optimal centered form. BIT 28, 80–87 (1987)

    Article  MathSciNet  Google Scholar 

  6. R.J. Bhiwani, B.M. Patre, Solving first order fuzzy equations: A modal interval approach, in 2009 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET) (2009), pp. 953–956

    Google Scholar 

  7. J. Bondia, A. Sala, A. Pic, M.A. Sainz, Controller design under fuzzy pole-placement specifications: An interval arithmetic approach. IEEE Trans. Fuzzy Syst. 14(6), 822–836 (2006)

    Article  Google Scholar 

  8. R. Calm, M. García-Jaramillo, J. Bondia, M.A. Sainz, J. Vehí, Comparison of interval and monte carlo simulation for the prediction of postprandial glucose under uncertainty in tipe 1 diabetes mellitus. Comput. Methods Progr. Biomed. 104, 325–332 (2011)

    Article  Google Scholar 

  9. J.M. Danskin, The Theory of Max-Min and Its Applications to Weapons Allocation Problems (Springer, Berlin, 1967)

    Book  Google Scholar 

  10. V.F. Demyanov, V.N. Malozemov, Introduction to Minimax (Dover, New York, 1990)

    Google Scholar 

  11. G.D. Erdmann, A new minimax algorithm and its applications to optics problems. Ph.D. thesis, University of Minnesota, USA, 2003

    Google Scholar 

  12. M. García-Jaramillo, R. Calm, J. Bondía, J. Vehí, Prediction of postprandial blood glucose under uncertainty and intra-patient variability in type 1 diabetes: a comparative study of three interval models. Comput. Methods Programs Biomed. 108, 325–332 (2012)

    Article  Google Scholar 

  13. A. Goldstein, Modal intervals revisited. Part 1: A generalized interval natural extension. Reliable Comput. 16, 130–183 (2012)

    Google Scholar 

  14. A. Goldstein, Modal intervals revisited. Part 2: A generalized interval mean-value extension. Reliable Comput. 16, 184–209 (2012)

    Google Scholar 

  15. C. Grandón, G. Chabert, B. Neveu, Generalized interval projection: a new technique for consistent domain extension, in Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI’07), San Francisco, CA (Morgan Kaufmann, Los Altos, 2007), pp. 94–99

    Google Scholar 

  16. E. Hansen, Global Optimization Using Interval Analysis (Marcel Dekker, New York, 1992)

    MATH  Google Scholar 

  17. E. Hansen, W. Walster, Global Optimization Using Interval Analysis, 2nd edn, revised and expanded (Marcel Dekker, New York, 2004)

    Google Scholar 

  18. N. Hayes, System and method to compute narrow bounds on a modal interval spherical projection (Patent Number PCT/US2006/038871), 2007

    Google Scholar 

  19. N. Hayes, System and method to compute narrow bounds on a modal interval polynomial function (Patent Number US2008/0256155A1), 2009

    Google Scholar 

  20. P. Herrero, Quantified Real Constraint Solving Using Modal Intervals with Applications to Control. Ph.D. thesis, Ph.D. dissertation 1423, University of Girona, Girona (Spain), 2006

    Google Scholar 

  21. P. Herrero, R. Calm, J. Vehí, J. Armengol, P. Georgiou, N. Oliver, C. Tomazou, Robust fault detection system for insulin pump therapy using continuous glucose monitoring. J. Diabetes Sci. Technol. 6 (2012)

    Google Scholar 

  22. L. Jaulin, Reliable minimax parameter estimation. Reliable Comput. 7(3), 231–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Jaulin, E. Walter, Guaranted bound-error parameter estimation for nonlinear models with uncertain experimental factors. Automatica 35, 849–856 (1993)

    Article  Google Scholar 

  24. L. Jaulin, E. Walter, Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics (Springer, London, 2001)

    Book  Google Scholar 

  26. S. JongSok, Q. Zhiping, W. Xiaojun, Modal analysis of structures with uncertain-but-bounded parameters via interval analysis. J. Sound Vib. 303, 29–45 (2007)

    Article  Google Scholar 

  27. S. Khodaygan, M.R. Movahhedy, Tolerance analysis of assemblies with asymmetric tolerances by unified uncertaintyaccumulation model based on fuzzy logic. Int. J. Adv. Manuf. Technol. 53, 777–788 (2011)

    Article  Google Scholar 

  28. S. Khodaygan, M.R. Movahhedy, M. Saadat Foumani, Fuzzy-small degrees of freedom representation of linear and angular variations in mechanical assemblies for tolerance analysis and allocation. Mech. Mach. Theory, 46(4), 558–573 (2011)

    Article  MATH  Google Scholar 

  29. C. Kirjer-Neto, E. Polak, On the conversion of optimization problems with max-min constraints to standard optimization problems. SIAM J. Optim. 8(4), 887–915 (1998)

    Article  MathSciNet  Google Scholar 

  30. L. Kupriyanova, Inner estimation of the united solution set of interval algebraic system. Reliable Comput. 1(1), 15–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Kupriyanova, Finding inner estimates of the solution sets to equations with interval coefficients. Ph.D. thesis, Saratov State University, Saratov, Russia, 2000

    Google Scholar 

  32. L.S. Lawsdon, A.D. Waren, GRG2 User’s Guide (Prentice hall, Englewood Cliffs, 1982)

    Google Scholar 

  33. S. Markov, E. Popova, C. Ullrich, On the solution of linear algebraic equations involving interval coefficients. Iterative Methods Linear Algebra IMACS Ser. Comput. Appl. Math. 3, 216–225 (1996)

    Google Scholar 

  34. R.M. Murray, K.J. Åström, S.P. Boyd, R.W. Brockett, G. Stein, Future directions in control in an information-rich world. IEEE Control Syst. Mag. (2003)

    MATH  Google Scholar 

  35. A. Neumaier, Interval Methods for Systems of Equations (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  36. K. Nickel, Optimization using interval mathematics. Freibg. Intervall Ber. 1, 25–47 (1986)

    Google Scholar 

  37. P. Herrero, L. Jaulin, J. Vehí, M.A. Sainz Guaranteed set-point computation with application to the control of a sailboat. Int. J. Control Autom. Syst. 8, 1–7 (2010)

    Google Scholar 

  38. E. Polak, in Optimization. Algorithms and Consistent Approximations. Applied Mathematical Sciences, vol. 124 (Springer, New York, 1997)

    Google Scholar 

  39. S. Ratschan, Applications of quantified constraint solving (2002). http://www.mpi-sb.mpg.de/~ratschan/appqcs.html

  40. A. Revert, R. Calm, J. Vehí, J. Bondia, Calculation of the best basal-bolus combination for postprandial glucose control in insulin pump therapy. IEEE Trans. Biomed. Eng. 58, 274–281 (2011)

    Article  Google Scholar 

  41. B. Rustem, M. Howe, Algorithms for Worst-Case Design and Applications to Risk Management (Princeton University Press, Princeton, 2002)

    MATH  Google Scholar 

  42. M.Á. Sainz, J.M. Baldasano, Modelo matemático de autodepuración para el bajo Ter (in spanish). Technical report, Junta de Sanejament, Generalitat de Catalunya, 1988

    Google Scholar 

  43. M.Á. Sainz, J. Armengol, J. Vehí, Fault diagnosis of the three tanks system using the modal interval analysis. J. Process Control 12(2), 325–338 (2002)

    Article  Google Scholar 

  44. S.P. Shary, Solving the linear interval tolerance problem. Math. Comput. Simul. 39(2), 145–149 (1995)

    MathSciNet  Google Scholar 

  45. S.P. Shary, Algebraic approach to the interval linear static identification, tolerance and control problems, or one more application of kaucher arithmetic. Reliable Comput. 2(1), 3–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. S.P. Shary, Outer estimation of generalized solution sets to interval linear systems. Reliable Comput. 5, 323–335 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. S.P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Comput. 8, 321–418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Vehí, J. Rodellar, M.Á. Sainz, J. Armengol, Analysis of the robustness of predictive controllers via modal intervals. Reliable Comput. 6(3), 281–301 (2000)

    Article  MATH  Google Scholar 

  49. Y. Wang, Semantic tolerance modeling based on modal interval, in NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, 2006

    Google Scholar 

  50. Y. Wang, Closed-loop analysis in semantic tolerance modeling. J. Mech. Des. 130, 061701–061711 (2008)

    Article  Google Scholar 

  51. Y. Wang, Semantic tolerance modeling with generalized intervals. J. Mech. Des. 130, 081701–081708 (2008)

    Article  Google Scholar 

  52. S. Zuche, A. Neumaier, M.C. Eiermann, Solving minimax problems by interval methods. BIT 30, 742–751 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sainz, M.A., Armengol, J., Calm, R., Herrero, P., Jorba, L., Vehi, J. (2014). Some Related Problems. In: Modal Interval Analysis. Lecture Notes in Mathematics, vol 2091. Springer, Cham. https://doi.org/10.1007/978-3-319-01721-1_10

Download citation

Publish with us

Policies and ethics